1、關於大數據的報告應該從哪幾個方面入手? 在線等
你好 這個太過於復雜要結合到100面前的事了只有簡單的給你說一下大數據(Big Data)又稱為巨量專資料,屬指需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
2、大數據、IDC和雲計算之間有什麼關系嗎?
大數據是雲計算的殺手鐧應用
大數據與雲計算的關系,引起一些人的困惑。為了便於探討二者的關系,這里從「計算」和「數據」的歷史關系說起。因為雲計算首先是一種「計算」,大數據首先是一種「數據」,而計算機就是用來「計算」「數據」的。
計算機是軟體和硬體分離的,是一種軟體定義的電子產品(可編程)。計算機設計中的一個重要問題是如何有效管理CPU、內存和I/O等硬體資源,以及如何讓應用程序合理使用這些資源。這兩大任務最早內嵌在各種應用程序中,由應用程序自身完成,缺點是費力、復雜和易錯,難以升級和移植,而且重復工作。
上世紀60年代這些共性功能開始從應用中分離出來,逐步形成了一種通用的軟體包,這就是操作系統。操作系統是位於硬體和應用程序之間的「中間件」,讓應用軟體和硬體得以分離並獨立發展,發展成了最核心的計算機系統軟體,也成就了微軟公司的偉大。
以UNIX為始祖的常見現代操作系統有Android、BSD、iOS、Linux、 MacOSX、QNX等,以及原創的微軟Windows、 Windows Phone和IBM的z/OS.操作系統的工作范圍,也從最初的計算機蔓延到手機、游戲控制器、電視機頂盒、智能汽車和智能眼鏡等,還有與雲計算密切相關的Web伺服器。
上世紀70年代,計算機的快速發展使得數字化數據爆發式增長,「海量」數據管理成了新挑戰。把通用操作系統的文件管理用於數據管理時,無論是擴展性、效率和便利性,都不適應「海量」數據的管理需要,應用軟體被迫內嵌自己設計的數據管理系統。同樣的,「海量」數據管理由每個應用程序自身完成,缺點也是費力、復雜和易錯,難以升級和移植,並且重復工作。
於是一種專門面向「海量」數據管理的通用軟體問世了,那就是資料庫管理系統(DBMS),一種應用系統軟體。DBMS包括了資料庫定義、創建、查詢、更新和管理等功能,這些都是數據管理所必需的,是操作系統的文件管理系統所沒有的。
著名的DBMS有 MySQL、 PostgreSQL、SQLite、Microsoft SQL Server、Microsoft Access、Oracle、Sybase、dBASE、FoxPro和IBM DB2等,都是關系型DBMS.當然還有非關系型No SQL模式的,只是沒那麼流行。
DBMS與字處理軟體等一起,成為單機時代最重要的應用軟體,也成就了一家偉大的應用軟體公司Oracle.大約不足20年前,操作系統和資料庫的技術和市場未來,看起來都那麼可預知。一個是微軟的天下,一個是Oracle的天下。
但互聯網來了,尤其是Web開始流行。
Web伺服器所使用的操作系統,最初面向單機設計,擴展用於區域網范圍內管理多台伺服器還勉強可用。但當互聯網巨頭崛起,需要Web伺服器的操作系統管理數百萬台Web伺服器的時候,傳統操作系統勉為其難,需要「技術革命」了。「革命」的結果就是雲計算。
雲計算大傘下有很多概念,核心技術之一是虛擬化。虛擬化有「1虛N」和「N虛1」兩種模式,前者主要是為了省錢,以Amazon AWS為代表;後者主要是為了大數據處理,以Google GAE為代表。
雲計算的「N虛1」模式,可將多台物理計算機虛擬化為一台超級計算機,向應用程序提供資源池的調度管理服務,與傳統操作系統的功能幾乎完全相同,因此常被稱為「雲計算操作系統」。只是雲計算操作系統的工作范圍,擴大到數據中心甚至整個互聯網范圍內,把每台計算機也當做資源看待和管理。
有了雲計算操作系統,雲應用軟體和硬體(計算機資源)得以分離,各自可以獨立發展。歷史再次重演,雲計算以及SNS、微博、移動互聯網和物聯網等的快速發展,具有3V特點的數據爆發,大數據管理的挑戰也最先到來。同樣,面向計算設計的通用雲計算操作系統,在大數據管理方面的擴展性、效率和便利性,都面臨新挑戰。
歷史上計算機面對「海量」數據的挑戰,將數據應用和數據管理分離,催生了通用的DBMS.現在雲計算面對大數據的挑戰,也必將使大數據應用和大數據管理分離,催生「大資料庫管理系統」,並且逐步走向通用化和平台化。
ATM(非同步傳輸模式)是通信資源稀缺時代的產物,TCP/IP是通信資源富饒時代的產物。類似的,傳統DBMS是IT資源稀缺時代的產物,大數據管理系統是IT資源富饒時代的產物。
計算是工具,可以工業化提供;數據是資源,是個性化的資產。如果說Office、游戲等是PC的殺手鐧應用,瀏覽器、搜索、SNS等是互聯網的殺手鐧應用,那麼大數據等就是雲計算的殺手鐧應用。
3、大數據報告要怎麼做,哪兒有教程?
大數據不僅僅意味著數據大,最重要的是對大數據進行分析,只有通過分析才能獲取很多智能的、深入的、有價值的信息。下面介紹大數據分析的五個基本方面——
預測性分析能力:數據挖掘可以讓分析員更好地理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
數據質量和數據管理:通過標准化的流程和工具對數據進行處理,可以保證一個預先定義好的高質量的分析結果。
可視化分析:不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求,可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
語義引擎:由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析、提取、分析數據,語義引擎需要被設計成能夠從逗文檔地中智能提取信息。
數據挖掘演算法:可視化是給人看的,數據挖掘就是給機器看的,集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值,這些演算法不僅要處理大數據的量,也要處理大數據的速度。
據我所知多瑞科輿情數據分析站大數據分析還可以。針對單個網站上的海量數據,無遺漏搜集整理歸檔,並且支持各種圖文分析報告;針對微博或網站或微信,活動用戶投票和活動用戶評論互動信息整理歸檔,統計分析精準預測製造新數據;針對某個論壇版塊數據精準採集,數據歸類,出分析報告,准確定位最新市場動態;針對某個網站監測用戶的操作愛好,評定最受歡迎功能;針對部分網站,做實時數據抽取,預警支持關注信息的最新擴散情況;針對全網數據支持定向採集,設置關鍵詞搜集數據,也可以劃分區域或指定網站搜集數據針對電商網站實時監測評論,歸類成文檔,支持出報告。
大數據會影響整個社會的發展,主要看是想要利用數據做什麼了
4、大數據,IDC,雲計算之間有什麼關系嗎?
大數據是雲計算的殺手鐧應用
大數據與雲計算的關系,引起一些人的困惑。為了便於探討二者的關系,這里從「計算」和「數據」的歷史關系說起。因為雲計算首先是一種「計算」,大數據首先是一種「數據」,而計算機就是用來「計算」「數據」的。
計算機是軟體和硬體分離的,是一種軟體定義的電子產品(可編程)。計算機設計中的一個重要問題是如何有效管理CPU、內存和I/O等硬體資源,以及如何讓應用程序合理使用這些資源。這兩大任務最早內嵌在各種應用程序中,由應用程序自身完成,缺點是費力、復雜和易錯,難以升級和移植,而且重復工作。
上世紀60年代這些共性功能開始從應用中分離出來,逐步形成了一種通用的軟體包,這就是操作系統。操作系統是位於硬體和應用程序之間的「中間件」,讓應用軟體和硬體得以分離並獨立發展,發展成了最核心的計算機系統軟體,也成就了微軟公司的偉大。
以UNIX為始祖的常見現代操作系統有Android、BSD、iOS、Linux、 MacOSX、QNX等,以及原創的微軟Windows、 Windows Phone和IBM的z/OS.操作系統的工作范圍,也從最初的計算機蔓延到手機、游戲控制器、電視機頂盒、智能汽車和智能眼鏡等,還有與雲計算密切相關的Web伺服器。
上世紀70年代,計算機的快速發展使得數字化數據爆發式增長,「海量」數據管理成了新挑戰。把通用操作系統的文件管理用於數據管理時,無論是擴展性、效率和便利性,都不適應「海量」數據的管理需要,應用軟體被迫內嵌自己設計的數據管理系統。同樣的,「海量」數據管理由每個應用程序自身完成,缺點也是費力、復雜和易錯,難以升級和移植,並且重復工作。
於是一種專門面向「海量」數據管理的通用軟體問世了,那就是資料庫管理系統(DBMS),一種應用系統軟體。DBMS包括了資料庫定義、創建、查詢、更新和管理等功能,這些都是數據管理所必需的,是操作系統的文件管理系統所沒有的。
著名的DBMS有 MySQL、 PostgreSQL、SQLite、Microsoft SQL Server、Microsoft Access、Oracle、Sybase、dBASE、FoxPro和IBM DB2等,都是關系型DBMS.當然還有非關系型No SQL模式的,只是沒那麼流行。
DBMS與字處理軟體等一起,成為單機時代最重要的應用軟體,也成就了一家偉大的應用軟體公司Oracle.大約不足20年前,操作系統和資料庫的技術和市場未來,看起來都那麼可預知。一個是微軟的天下,一個是Oracle的天下。
但互聯網來了,尤其是Web開始流行。
Web伺服器所使用的操作系統,最初面向單機設計,擴展用於區域網范圍內管理多台伺服器還勉強可用。但當互聯網巨頭崛起,需要Web伺服器的操作系統管理數百萬台Web伺服器的時候,傳統操作系統勉為其難,需要「技術革命」了。「革命」的結果就是雲計算。
雲計算大傘下有很多概念,核心技術之一是虛擬化。虛擬化有「1虛N」和「N虛1」兩種模式,前者主要是為了省錢,以Amazon AWS為代表;後者主要是為了大數據處理,以Google GAE為代表。
雲計算的「N虛1」模式,可將多台物理計算機虛擬化為一台超級計算機,向應用程序提供資源池的調度管理服務,與傳統操作系統的功能幾乎完全相同,因此常被稱為「雲計算操作系統」。只是雲計算操作系統的工作范圍,擴大到數據中心甚至整個互聯網范圍內,把每台計算機也當做資源看待和管理。
有了雲計算操作系統,雲應用軟體和硬體(計算機資源)得以分離,各自可以獨立發展。歷史再次重演,雲計算以及SNS、微博、移動互聯網和物聯網等的快速發展,具有3V特點的數據爆發,大數據管理的挑戰也最先到來。同樣,面向計算設計的通用雲計算操作系統,在大數據管理方面的擴展性、效率和便利性,都面臨新挑戰。
歷史上計算機面對「海量」數據的挑戰,將數據應用和數據管理分離,催生了通用的DBMS.現在雲計算面對大數據的挑戰,也必將使大數據應用和大數據管理分離,催生「大資料庫管理系統」,並且逐步走向通用化和平台化。
ATM(非同步傳輸模式)是通信資源稀缺時代的產物,TCP/IP是通信資源富饒時代的產物。類似的,傳統DBMS是IT資源稀缺時代的產物,大數據管理系統是IT資源富饒時代的產物。
計算是工具,可以工業化提供;數據是資源,是個性化的資產。如果說Office、游戲等是PC的殺手鐧應用,瀏覽器、搜索、SNS等是互聯網的殺手鐧應用,那麼大數據等就是雲計算的殺手鐧應用。