導航:首頁 > 網路營銷 > sem顯微鏡

sem顯微鏡

發布時間:2020-07-26 22:41:59

1、SEM掃描電鏡圖怎麼看,圖上各參數都代表什麼意思

1、放大率:

與普通光學顯微鏡不同,在SEM中,是通過控制掃描區域的大小來控制放大率的。如果需要更高的放大率,只需要掃描更小的一塊面積就可以了。放大率由屏幕/照片面積除以掃描面積得到。

所以,SEM中,透鏡與放大率無關。

2、場深:

在SEM中,位於焦平面上下的一小層區域內的樣品點都可以得到良好的會焦而成象。這一小層的厚度稱為場深,通常為幾納米厚,所以,SEM可以用於納米級樣品的三維成像。

3、作用體積:

電子束不僅僅與樣品表層原子發生作用,它實際上與一定厚度范圍內的樣品原子發生作用,所以存在一個作用「體積」。

4、工作距離:

工作距離指從物鏡到樣品最高點的垂直距離。

如果增加工作距離,可以在其他條件不變的情況下獲得更大的場深。如果減少工作距離,則可以在其他條件不變的情況下獲得更高的解析度。通常使用的工作距離在5毫米到10毫米之間。

5、成象:

次級電子和背散射電子可以用於成象,但後者不如前者,所以通常使用次級電子。

6、表面分析:

歐革電子、特徵X射線、背散射電子的產生過程均與樣品原子性質有關,所以可以用於成分分析。但由於電子束只能穿透樣品表面很淺的一層(參見作用體積),所以只能用於表面分析。

表面分析以特徵X射線分析最常用,所用到的探測器有兩種:能譜分析儀與波譜分析儀。前者速度快但精度不高,後者非常精確,可以檢測到「痕跡元素」的存在但耗時太長。

觀察方法:

如果圖像是規則的(具螺旋對稱的活體高分子物質或結晶),則將電鏡像放在光衍射計上可容易地觀察圖像的平行周期性。

尤其用光過濾法,即只留衍射像上有周期性的衍射斑,將其他部分遮蔽使重新衍射,則會得到背景干擾少的鮮明圖像。

(1)sem顯微鏡擴展資料:

SEM掃描電鏡圖的分析方法:

從干擾嚴重的電鏡照片中找出真實圖像的方法。在電鏡照片中,有時因為背景干擾嚴重,只用肉眼觀察不能判斷出目的物的圖像。

圖像與其衍射像之間存在著數學的傅立葉變換關系,所以將電鏡像用光度計掃描,使各點的濃淡數值化,將之進行傅立葉變換,便可求出衍射像〔衍射斑的強度(振幅的2乘)和其相位〕。

將其相位與從電子衍射或X射線衍射強度所得的振幅組合起來進行傅立葉變換,則會得到更鮮明的圖像。此法對屬於活體膜之一的紫膜等一些由二維結晶所成的材料特別適用。

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

2、光學顯微鏡和電子顯微鏡的區別

光學顯微鏡和電子顯微鏡的區別是:光學顯微鏡只能看到某些細胞結構,如細胞壁、葉綠體、染色後的染色體、線粒體、細胞核等,電子顯微鏡可以看到細胞器的內部結構以及象核糖體這樣較小的細胞器。總之,光學顯微鏡看到細胞的顯微結構,電子顯微鏡可以看到亞顯微結構。
主要區別是放大倍數。光學顯微鏡有放大極限,就算放的再大,人眼也分辨不出來。y(min)=0.61*波長)/(n*sinu)
——
n*sinu就算是油浸的,最大也差不多是1.5左右,剩下的就靠波長大小決定了。所以光學顯微鏡最大就1000倍左右,再放大也沒用了。而電子顯微鏡是用電子束成像,波長比可見光小的多,所以最小分辨距離y(min)就小的多,可以分辨更小的細節,放大倍率可以達到幾百萬。

3、掃描電子顯微鏡。掃描隧道顯微鏡。透射電子顯微鏡。相差顯微鏡。 它們的原理 主要區別 應用 是什麼?

掃描電子顯微鏡(SEM)是1965年發明的較現代的細胞生物學研究工具,主要是利用二次電子信號成像來觀察樣品的表面形態,即用極狹窄的電子束去掃描樣品,通過電子束與樣品的相互作用產生各種效應,其中主要是樣品的二次電子發射。
二次電子能夠產生樣品表面放大的形貌像,這個像是在樣品被掃描時按時序建立起來的,即使用逐點成像的方法獲得放大像。

掃描隧道顯微鏡
掃描隧道顯微鏡亦稱為「掃描穿隧式顯微鏡」、「隧道掃描顯微鏡」,是一種利用量子理論中的隧道效應探測物質表面結構的儀器。它於1981年由格爾德·賓寧(G.Binnig)及海因里希·羅雷爾(H.Rohrer)在IBM位於瑞士蘇黎世的蘇黎世實驗室發明,兩位發明者因此與恩斯特·魯斯卡分享了1986年諾貝爾物理學獎。

透射電子顯微鏡(Transmission Electron Microscope,簡稱TEM),可以看到在光學顯微鏡下無法看清的小於0.2um的細微結構,這些結構稱為亞顯微結構或超微結構。要想看清這些結構,就必須選擇波長更短的光源,以提高顯微鏡的解析度。1932年Ruska發明了以電子束為光源的透射電子顯微鏡,電子束的波長要比可見光和紫外光短得多,並且電子束的波長與發射電子束的電壓平方根成反比,也就是說電壓越高波長越短。目前TEM的分辨力可達0.2nm。

相差顯微鏡是荷蘭科學家Zernike於1935年發明的,用於觀察未染色標本的顯微鏡。活細胞和未染色的生物標本,因細胞各部細微結構的折射率和厚度的不同,光波通過時,波長和振幅並不發生變化,僅相位發生變化(振幅差),這種振幅差人眼無法觀察。而相差顯微鏡通過改變這種相位差,並利用光的衍射和干涉現象,把相差變為振幅差來觀察活細胞和未染色的標本。相差顯微鏡和普通顯微鏡的區別是:用環狀光闌代替可變光闌, 用帶相板的物鏡代替普通物鏡,並帶有一個合軸用的望遠鏡。

4、掃描電鏡的工作原理是什麼

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

當一束極細的高能入射電子轟擊掃描樣品表面時,被激發的區域將產生二次電子、俄歇電子、特徵x射線和連續譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區域產生的電磁輻射。同時可產生電子-空穴對、晶格振動(聲子)、電子振盪(等離子體)。

(4)sem顯微鏡擴展資料:

研發歷程:

1873 Abbe 和Helmholfz 分別提出解像力與照射光的波長成反比。奠定了顯微鏡的理論基礎。

1931德國物理學家Knoll 及Ruska 首先發展出穿透式電子顯微鏡原型機。

1938 第一部掃描電子顯微鏡由Von Ardenne 發展成功。

1959年第一台100KV電子顯微鏡 1975年第一台掃描電子顯微鏡DX3 在中國科學院科學儀器廠(現北京中科科儀技術發展有限責任公司)研發成功。

5、掃描電鏡

掃描電子顯微鏡(SEM)是1965年以後才迅速發展起來的新型電子儀器。其主要特點可歸納為:①儀器解析度高;②儀器的放大倍數范圍大,一般可達15~180000倍,並在此范圍內連續可調;③圖像景深大,富有立體感;④樣品制備簡單,可不破壞樣品;⑤在SEM上裝上必要的專用附件——能譜儀(EDX),以實現一機多用,在觀察形貌像的同時,還可對樣品的微區進行成分分析。

一、掃描電子顯微鏡(SEM)的基本結構及原理

掃描電鏡基本上是由電子光學系統、信號接收處理顯示系統、供電系統、真空系統等四部分組成。圖13-2-1是它的前兩部分結構原理方框圖。電子光學部分只有起聚焦作用的匯聚透鏡,它們的作用是用信號收受處理顯示系統來完成的。

圖13-2-1 SEM的基本結構示意圖

在掃描電鏡中,電子槍發射出來的電子束,經3個電磁透鏡聚焦,成直徑為20 μm~25 Å的電子束。置於末級透鏡上部的掃描線圈能使電子束在試樣表面上做光柵狀掃描。試樣在電子束作用下,激發出各種信號,信號的強度取決於試樣表面的形貌、受激區域的成分和晶體取向。試樣附近的探測器把激發出的電子信號接受下來,經信號處理放大系統後,輸送到陰極射線管(顯像管)的柵極以調制顯像管的亮度。由於顯像管中的電子束和鏡筒中的電子束是同步掃描的,顯像管亮度是由試樣激發出的電子信號強度來調制的,由試樣表面任一點所收集來的信號強度與顯像管屏上相應點亮度一一對應,因此試樣狀態不同,相應的亮度也必然不同。由此,得到的像一定是試樣形貌的反映。若在試樣斜上方安置的波譜儀和能譜儀,收集特徵X射線的波長和能量,則可做成分分析。

值得注意的是,入射電子束在試樣表面上是逐點掃描的,像是逐點記錄的,因此試樣各點所激發出來的各種信號都可選錄出來,並可同時在相鄰的幾個顯像管上或X—Y記錄儀上顯示出來,這給試樣綜合分析帶來極大的方便。

二、高能電子束與樣品的相互作用

並從樣品中激發出各種信息。對於寶石工作者,最常用的是二次電子、背散射電子和特徵X射線。上述信息產生的機理各異,採用不同的檢測器,選擇性地接收某一信息就能對樣品進行成分分析(特徵X射線)或形貌觀察(二次電子和背散射電子)。這些信息主要有以下的特徵:

1.二次電子(SE)

從距樣品表面100 Å左右的深度范圍內激發的低能量電子(一般為0~50 eV左右)發生非彈性碰撞。二次電子像是SEM中應用最廣、解析度最高的一種圖像,成像原理亦有一定的代表性。高能入射電子束(一般為10~35 keV)由掃描線圈磁場的控制,在樣品表面上按一定的時間、空間順序作光柵式掃描,而從試樣中激發出二次電子。被激發出的二次電子經二次電子收集極、閃爍體、光導管、光電倍增管以及視頻放大器,放大成足夠強的電信號,用以調制顯像管的亮度。由於入射電子束在樣品上的掃描和顯像管的電子束在熒光屏上的掃描用同一個掃描發生器調制,這就保證了樣品上任一物點與熒光屏上任一「像點」在時間與空間上一一對應;同時,二次電子激發量隨試樣表面凹凸程度的變化而變化,所以,顯像管熒光屏上顯現的是一幅明暗程度不同的反映樣品表面形貌的二次電子像。由於二次電子具有低的能量,為了收集到足夠強的信息,二次電子檢測器的收集必須處於正電位(一般為+250 V ),在這個正電位的作用下,試樣表面向各個方向發射的二次電子都被拉向收集極(圖13-2-2a),這就使二次電子像成為無影像,觀察起來更真實、更直觀、更有立體感。

2.背散射電子(BE)

從距樣品表面0.1~1 μm的深度范圍內散射回來的入射電子,其能量近似等於原入射電子的能量發生彈性碰撞。背散射電子像的成像過程幾乎與二次電子像相同,只不過是採用不同的探測器接收不同的信息而已,如圖13-2-2所示。

圖13-2-2 二次電子圖像和背散射電子圖像的照明效果

(據S.Kimoto,1972)

a:二次電子檢測方法;a′:二次電子圖像的照明效果;b:背散射電子檢測方法;b′:背散射電子圖像的照明效果

3.特徵X射線

樣品中被激發了的元素特徵X射線釋放出來(發射深度在0.5~5μm范圍內)。而要對樣品進行微區的元素的成分分析,則需藉助於被激發的特徵X射線。這就是通常所謂的「電子探針分析」,又通常把測定特徵X射線波長的方法叫波長色散法(WDS);測定特徵X射線能量的方法叫能量色散法(EDS)。掃描電子顯微鏡除了可運用於寶玉石的表面形貌外,它經常帶能譜(EDS)做成分分析。EDS主要是由高效率的鋰漂移硅半導體探測器、放大器、多道脈沖高度分析器和記錄系統組成。樣品被激發的特徵X射線,入射至鋰漂移硅半導體探測器中,使之產生電子—空穴對,然後轉換成電流脈沖,放大,經多道脈沖高度分析器按能量高低將這些脈沖分離,由這些脈沖所處的能量位置,可知試樣所含的元素的種類,由具有相應能量的脈沖數量可知該元素的相對含量。利用此方法很容易確定寶石礦物的成分。

掃描電鏡若帶有能譜(EDS)則不但可以不破壞樣品可運用於做寶玉石形貌像,而且還能快速做成分分析(如圖13-2-3,廖尚儀,2001)。因此它是鑒定和區別相似寶玉石礦物的好方法,如紅色的鎂鋁榴石,紅寶石、紅尖晶石、紅碧璽等,因為它們的成分不同,其能譜(EDS)圖也就有較大的區別。波譜(WDS)定量分析比能譜(EDS)定量分析精確,但EDS分析速度快。

圖13-2-3 藍色鉀-鈉閃石的能譜圖

三、SEM的微形貌觀察

1.樣品制備

如果選用粉狀樣,需要事先選擇好試樣台。如果是塊狀樣,最大直徑一般不超過15mm。如果單為觀察形貌像,直徑稍大一些(39mm)仍可以使用,但試樣必須導電。如果是非導電體試樣,必須在試樣表面覆蓋一層約200 Å厚度的碳或150 Å的金。

2.SEM形貌像的獲得

圖13-2-4 掃描電子顯微鏡下石英(a)和藍色閃石玉(b)的二次電子像

觀察試樣的形貌,常用二次電子像或背散射電子像。圖13-2-4是石英(a)和藍色閃石玉(鉀-鈉閃石b)的二次電子像。同時由於二次電子像具有較高的解析度和較高的放大倍數,因此,比背散射電子像更為常用。而成分分析則常採用背散射電子像。

6、掃描電鏡與透射電鏡的區別?

1、結構差異:

主要體現在樣品在電子束光路中的位置不同。透射電鏡的樣品在電子束中間,電子源在樣品上方發射電子,經過聚光鏡,然後穿透樣品後,有後續的電磁透鏡繼續放大電子光束,最後投影在熒光屏幕上;掃描電鏡的樣品在電子束末端,電子源在樣品上方發射的電子束,經過幾級電磁透鏡縮小,到達樣品。當然後續的信號探側處理系統的結構也會不同,但從基本物理原理上講沒什麼實質性差別。

2、基本工作原理:

透射電鏡:電子束在穿過樣品時,會和樣品中的原子發生散射,樣品上某一點同時穿過的電子方向是不同,這樣品上的這一點在物鏡1-2倍焦距之間,這些電子通過過物鏡放大後重新匯聚,形成該點一個放大的實像,這個和凸透鏡成像原理相同。這里邊有個反差形成機制理論比較深就不講,但可以這么想像,如果樣品內部是絕對均勻的物質,沒有晶界,沒有原子晶格結構,那麼放大的圖像也不會有任何反差,事實上這種物質不存在,所以才會有這種儀器存在的理由。

掃描電鏡:電子束到達樣品,激發樣品中的二次電子,二次電子被探測器接收,通過信號處理並調制顯示器上一個像素發光,由於電子束斑直徑是納米級別,而顯示器的像素是100微米以上,這個100微米以上像素所發出的光,就代表樣品上被電子束激發的區域所發出的光。實現樣品上這個物點的放大。如果讓電子束在樣品的一定區域做光柵掃描,並且從幾何排列上一一對應調制顯示器的像素的亮度,便實現這個樣品區域的放大成像。

3、對樣品要求

(1)掃描電鏡

SEM制樣對樣品的厚度沒有特殊要求,可以採用切、磨、拋光或解理等方法將特定剖面呈現出來,從而轉化為可以觀察的表面。這樣的表面如果直接觀察,看到的只有表面加工損傷,一般要利用不同的化學溶液進行擇優腐蝕,才能產生有利於觀察的襯度。不過腐蝕會使樣品失去原結構的部分真實情況,同時引入部分人為的干擾,對樣品中厚度極小的薄層來說,造成的誤差更大。

(2)透射電鏡

由於TEM得到的顯微圖像的質量強烈依賴於樣品的厚度,因此樣品觀測部位要非常的薄,例如存儲器器件的TEM樣品一般只能有10~100nm的厚度,這給TEM制樣帶來很大的難度。初學者在制樣過程中用手工或者機械控制磨製的成品率不高,一旦過度削磨則使該樣品報廢。TEM制樣的另一個問題是觀測點的定位,一般的制樣只能獲得10mm量級的薄的觀測范圍,這在需要精確定位分析的時候,目標往往落在觀測范圍之外。目前比較理想的解決方法是通過聚焦離子束刻蝕(FIB)來進行精細加工。

(6)sem顯微鏡擴展資料:

透射電子顯微鏡的成像原理 可分為三種情況:

(1)吸收像:當電子射到質量、密度大的樣品時,主要的成相作用是散射作用。樣品上質量厚度大的地方對電子的散射角大,通過的電子較少,像的亮度較暗。早期的透射電子顯微鏡都是基於這種原理。

(2)衍射像:電子束被樣品衍射後,樣品不同位置的衍射波振幅分布對應於樣品中晶體各部分不同的衍射能力,當出現晶體缺陷時,缺陷部分的衍射能力與完整區域不同,從而使衍射波的振幅分布不均勻,反映出晶體缺陷的分布。

(3)相位像:當樣品薄至100Å以下時,電子可以穿過樣品,波的振幅變化可以忽略,成像來自於相位的變化。

7、sem掃描電子顯微鏡精度是多少?

SEM作為顯微鏡,可以放大微觀物體形態,一般允許誤差在放大倍數±5%。 在相同工作條件下,放大倍數一般不會漂移,精度可靠。但隨著溫濕度變化,隨著電磁環境變化,可能會有漂移。因為SEM放大和光學顯微鏡放大完全不同,完全靠掃描線圈和電器元件控制,電器元件的老化,可能會引起放大倍數漂移,因此過兩年需要校準放大倍數。
另外SEM圖像尺寸測量精度問題,這個情況和方舟子質疑韓2身高有些類似,許多人用圖像測量得出的結果誤差很大。但相同的測量方法精度很高!
還有SEM作為材料分析平台,做化學成分分析,晶體結構分析。偏差可以保證2%以內。
最後總結:精度靠方法和條件保證!前提是方法一致,條件不要變化!!

8、掃描電子顯微鏡的工作原理

掃描電子顯微鏡的工作原理:

掃描電子顯微鏡的製造依據是電子與物質的相互作用。

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

當一束極細的高能入射電子轟擊掃描樣品表面時,被激發的區域將產生二次電子、俄歇電子、特徵x射線和連續譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區域產生的電磁輻射。同時可產生電子-空穴對、晶格振動(聲子)、電子振盪(等離子體)。

(8)sem顯微鏡擴展資料:

研發歷程:

1873 Abbe 和Helmholfz 分別提出解像力與照射光的波長成反比。奠定了顯微鏡的理論基礎。

1931德國物理學家Knoll 及Ruska 首先發展出穿透式電子顯微鏡原型機。

1938 第一部掃描電子顯微鏡由Von Ardenne 發展成功。

1959年第一台100KV電子顯微鏡 1975年第一台掃描電子顯微鏡DX3 在中國科學院科學儀器廠(現北京中科科儀技術發展有限責任公司)研發成功。

9、電子顯微鏡的優缺點分別是什麼

優點:

1、解析度高,光學顯微鏡的解析度為0.2μm,透射電子顯微鏡的解析度為0.2nm,也就是說透射電子顯微鏡在光學顯微鏡的基礎上放大了1000倍。

2、透射式電子顯微鏡常用於觀察那些用普通顯微鏡所不能分辨的細微物質結構;掃描式電子顯微鏡主要用於觀察固體表面的形貌,也能與X射線衍射儀或電子能譜儀相結合,構成電子微探針,用於物質成分分析;發射式電子顯微鏡用於自發射電子表面的研究。

缺點:

1、在電子顯微鏡中樣本必須在真空中觀察,因此無法觀察活樣本。隨著技術的進步,環境掃描電鏡將逐漸實現直接對活樣本的觀察;

2、在處理樣本時可能會產生樣本本來沒有的結構,這加劇了此後分析圖像的難度;

3、由於電子散射能力極強,容易發生二次衍射等;

4、由於為三維物體的二維平面投影像,有時像不唯一;

5、由於透射電子顯微鏡只能觀察非常薄的樣本,而有可能物質表面的結構與物質內部的結構不同;

6、超薄樣品(100納米以下),制樣過程復雜、困難,制樣有損傷;

7、電子束可能通過碰撞和加熱破壞樣本;

8、此外電子顯微鏡購買和維護的價格都比較高。

(9)sem顯微鏡擴展資料

生物電鏡研究對象:

1、生物體體表及形態研究:主要是通過掃描電鏡觀察分析比如昆蟲體表表面結構(如眼睛、翅膀及體表微結構)及細菌病毒等微生物形態結構、大小等研究。

2、細胞超微結構及超微病理研究:主要通過透射電鏡觀察分析各種組織中細胞的形態及諸如線粒體、內質網、核糖體、溶酶體、分泌顆粒等細胞器,細胞連接如橋粒連接、緊密連接等,特化結構如纖毛、微絨毛等。

間質成分如膠原纖維,基質結構及血管結構等,還可以通過輔助儀器分析細胞內各種元素的分布情況等。通過連續切片技術進行三維重構對細胞器、細胞連接結構等三維結構進行研究。

3、膜蛋白結構研究:主要通過冷凍電鏡和三維重構技術觀察分析蛋白形態結構及其成分構成包括各種膜結構蛋白及蛋白定位及定性研究;酶細胞化學研究;抗原抗體研究(膠體金技術)等等。

4、臨床超微病理研究:主要通過透射電鏡對活檢組織進行觀察分析,做出病理判斷,比如腎臟病疾病分型、肝炎分型、腫瘤組織來源、病毒類型判斷等。

與sem顯微鏡相關的知識