導航:首頁 > 網路營銷 > sem掃描

sem掃描

發布時間:2020-07-27 13:10:02

1、場發射掃描電鏡和環境掃描電鏡的區別。

掃描式電子顯微鏡,其系統設計由上而下,由電子槍 (Electron Gun) 發射電子束,經過一組磁透鏡聚焦 (Condenser Lens) 聚焦後,用遮蔽孔徑 (Condenser Aperture) 選擇電子束的尺寸(Beam Size)後,通過一組控制電子束的掃描線圈,再透過物鏡 (Objective Lens) 聚焦,打在樣品上,在樣品的上側裝有訊號接收器,用以擇取二次電子 (Secondary Electron) 或背向散射電子 (Backscattered Electron) 成像。
電子槍的必要特性是亮度要高、電子能量散布 (Energy Spread) 要小,目前常用的種類計有三種,鎢(W)燈絲、六硼化鑭(LaB6)燈絲、場發射 (Field Emission),不同的燈絲在電子源大小、電流量、電流穩定度及電子源壽命等均有差異。
熱游離方式電子槍有鎢(W)燈絲及六硼化鑭(LaB6)燈絲兩種,它是利用高溫使電子具有足夠的能量去克服電子槍材料的功函數(work function)能障而逃離。對發射電流密度有重大影響的變數是溫度和功函數,但因操作電子槍時均希望能以最低的溫度來操作,以減少材料的揮發,所以在操作溫度不提高的狀況下,就需採用低功函數的材料來提高發射電流密度。
價錢最便宜使用最普遍的是鎢燈絲,以熱游離 (Thermionization) 式來發射電子,電子能量散布為 2 eV,鎢的功函數約為4.5eV,鎢燈絲系一直徑約100μm,彎曲成V形的細線,操作溫度約2700K,電流密度為1.75A/cm2,在使用中燈絲的直徑隨著鎢絲的蒸發變小,使用壽命約為40~80小時。
六硼化鑭(LaB6)燈絲的功函數為2.4eV,較鎢絲為低,因此同樣的電流密度,使用LaB6隻要在1500K即可達到,而且亮度更高,因此使用壽命便比鎢絲高出許多,電子能量散布為 1 eV,比鎢絲要好。但因LaB6在加熱時活性很強,所以必須在較好的真空環境下操作,因此儀器的購置費用較高。
場發射式電子槍則比鎢燈絲和六硼化鑭燈絲的亮度又分別高出 10 - 100 倍,同時電子能量散布僅為 0.2 - 0.3 eV,所以目前市售的高解析度掃描式電子顯微鏡都採用場發射式電子槍,其解析度可高達 1nm 以下。
目前常見的場發射電子槍有兩種:冷場發射式(cold field emission , FE),熱場發射式(thermal field emission ,TF)
當在真空中的金屬表面受到108V/cm大小的電子加速電場時,會有可觀數量的電子發射出來,此過程叫做場發射,其原理是高電場使電子的電位障礙產生Schottky效應,亦即使能障寬度變窄,高度變低,因此電子可直接"穿隧"通過此狹窄能障並離開陰極。場發射電子系從很尖銳的陰極尖端所發射出來,因此可得極細而又具高電流密度的電子束,其亮度可達熱游離電子槍的數百倍,或甚至千倍。
場發射電子槍所選用的陰極材料必需是高強度材料,以能承受高電場所加諸在陰極尖端的高機械應力,鎢即因高強度而成為較佳的陰極材料。場發射槍通常以上下一組陽極來產生吸取電子、聚焦、及加速電子等功能。利用陽極的特殊外形所產生的靜電場,能對電子產生聚焦效果,所以不再需要韋氏罩或柵極。第一(上)陽極主要是改變場發射的拔出電壓(extraction voltage),以控制針尖場發射的電流強度,而第二(下)陽極主要是決定加速電壓,以將電子加速至所需要的能量。
要從極細的鎢針尖場發射電子,金屬表面必需完全乾凈,無任何外來材料的原子或分子在其表面,即使只有一個外來原子落在表面亦會降低電子的場發射,所以場發射電子槍必需保持超高真空度,來防止鎢陰極表面累積原子。由於超高真空設備價格極為高昂,所以一般除非需要高解析度SEM,否則較少採用場發射電子槍。
冷場發射式最大的優點為電子束直徑最小,亮度最高,因此影像解析度最優。能量散布最小,故能改善在低電壓操作的效果。為避免針尖被外來氣體吸附,而降低場發射電流,並使發射電流不穩定,冷場發射式電子槍必需在10-10 torr的真空度下操作,雖然如此,還是需要定時短暫加熱針尖至2500K(此過程叫做flashing),以去除所吸附的氣體原子。它的另一缺點是發射的總電
流最小。
熱場發式電子槍是在1800K溫度下操作,避免了大部份的氣體分子吸附在針尖表面,所以免除了針尖flashing的需要。熱式能維持較佳的發射電流穩定度,並能在較差的真空度下(10-9 torr)操作。雖然亮度與冷式相類似,但其電子能量散布卻比冷式大3~5倍,影像解析度較差,通常較不常使用。

2、掃描透射電鏡(STEM)有哪些特點?

掃描透射電鏡(STEM)的特點:

(1)STEM技術要求較高,要非常高的真空度,並且電子學系統比TEM和SEM都要復雜。

(2)加速電壓低,可顯著減少電子束對樣品的損傷,而且可大大提高圖像的襯度,特別適合於有機高分子、生物等軟材料樣品的透射分析。

(3)可以觀察較厚的試樣和低襯度的試樣。

(4)掃描透射模式時物鏡的強激勵,可以實現微區衍射。

(5)應用掃描電鏡的STEM模式觀察生物樣品時,樣品無需染色直接觀察即可獲得較 高襯度的圖像。

3、哪位大神可以清楚的告訴我SEM,EDS,XRD的區別以及各自的應用

SEM,EDS,XRD的區別,SEM是掃描電鏡,EDS是掃描電鏡上配搭的一個用於微區分析成分的配件——能譜儀。能譜儀(EDS,Energy Dispersive Spectrometer)是用來對材料微區成分元素種類與含量分析,配合掃描電子顯微鏡與透射電子顯微鏡的使用。XRD是X射線衍射儀,是用於物相分析的檢測設備。
掃描電子顯微鏡(scanning electron microscope,SEM,圖2-17、18、19)於20世紀60年 代問世,用來觀察標本的表面結構。其工作原理是用一束極細的電子束掃描樣品,在樣品表面激發出次級電子,次級電子的多少與電子束入射角有關,也就是說與樣 品的表面結構有關,次級電子由探測體收集,並在那裡被閃爍器轉變為光信號,再經光電倍增管和放大器轉變為電信號來控制熒光屏上電子束的強度,顯示出與電子 束同步的掃描圖像。圖像為立體形象,反映了標本的表面結構。為了使標本表面發射出次級電子,標本在固定、脫水後,要噴塗上一層重金屬微粒,重金屬在電子束 的轟擊下發出次級電子信號。 目前掃描電鏡的分辨力為6~10nm,人眼能夠區別熒光屏上兩個相距0.2mm的光點,則掃描電鏡的最大有效放大倍率為0.2mm/10nm=20000X。
EDS的原理是各種元素具有自己的X射線特徵波長,特徵波長的大小則取決於能級躍遷過程中釋放出的特徵能量△E,能譜儀就是利用不同元素X射線光子特徵能量不同這一特點來進行成分分析的。使用范圍:
1、高分子、陶瓷、混凝土、生物、礦物、纖維等無機或有機固體材料分析;
2、金屬材料的相分析、成分分析和夾雜物形態成分的鑒定;
3、可對固體材料的表面塗層、鍍層進行分析,如:金屬化膜表面鍍層的檢測;
4、金銀飾品、寶石首飾的鑒別,考古和文物鑒定,以及刑偵鑒定等領域;
5、進行材料表面微區成分的定性和定量分析,在材料表面做元素的面、線、點分布分析。
X射線衍射儀是利用衍射原理,精確測定物質的晶體結構,織構及應力,精確的進行物相分析,定性分析,定量分析。廣泛應用於冶金、石油、化工、科研、航空航天、教學、材料生產等領域。

4、掃描電鏡與透射電鏡的區別?

1、結構差異:

主要體現在樣品在電子束光路中的位置不同。透射電鏡的樣品在電子束中間,電子源在樣品上方發射電子,經過聚光鏡,然後穿透樣品後,有後續的電磁透鏡繼續放大電子光束,最後投影在熒光屏幕上;掃描電鏡的樣品在電子束末端,電子源在樣品上方發射的電子束,經過幾級電磁透鏡縮小,到達樣品。當然後續的信號探側處理系統的結構也會不同,但從基本物理原理上講沒什麼實質性差別。

2、基本工作原理:

透射電鏡:電子束在穿過樣品時,會和樣品中的原子發生散射,樣品上某一點同時穿過的電子方向是不同,這樣品上的這一點在物鏡1-2倍焦距之間,這些電子通過過物鏡放大後重新匯聚,形成該點一個放大的實像,這個和凸透鏡成像原理相同。這里邊有個反差形成機制理論比較深就不講,但可以這么想像,如果樣品內部是絕對均勻的物質,沒有晶界,沒有原子晶格結構,那麼放大的圖像也不會有任何反差,事實上這種物質不存在,所以才會有這種儀器存在的理由。

掃描電鏡:電子束到達樣品,激發樣品中的二次電子,二次電子被探測器接收,通過信號處理並調制顯示器上一個像素發光,由於電子束斑直徑是納米級別,而顯示器的像素是100微米以上,這個100微米以上像素所發出的光,就代表樣品上被電子束激發的區域所發出的光。實現樣品上這個物點的放大。如果讓電子束在樣品的一定區域做光柵掃描,並且從幾何排列上一一對應調制顯示器的像素的亮度,便實現這個樣品區域的放大成像。

3、對樣品要求

(1)掃描電鏡

SEM制樣對樣品的厚度沒有特殊要求,可以採用切、磨、拋光或解理等方法將特定剖面呈現出來,從而轉化為可以觀察的表面。這樣的表面如果直接觀察,看到的只有表面加工損傷,一般要利用不同的化學溶液進行擇優腐蝕,才能產生有利於觀察的襯度。不過腐蝕會使樣品失去原結構的部分真實情況,同時引入部分人為的干擾,對樣品中厚度極小的薄層來說,造成的誤差更大。

(2)透射電鏡

由於TEM得到的顯微圖像的質量強烈依賴於樣品的厚度,因此樣品觀測部位要非常的薄,例如存儲器器件的TEM樣品一般只能有10~100nm的厚度,這給TEM制樣帶來很大的難度。初學者在制樣過程中用手工或者機械控制磨製的成品率不高,一旦過度削磨則使該樣品報廢。TEM制樣的另一個問題是觀測點的定位,一般的制樣只能獲得10mm量級的薄的觀測范圍,這在需要精確定位分析的時候,目標往往落在觀測范圍之外。目前比較理想的解決方法是通過聚焦離子束刻蝕(FIB)來進行精細加工。

(4)sem掃描擴展資料:

透射電子顯微鏡的成像原理 可分為三種情況:

(1)吸收像:當電子射到質量、密度大的樣品時,主要的成相作用是散射作用。樣品上質量厚度大的地方對電子的散射角大,通過的電子較少,像的亮度較暗。早期的透射電子顯微鏡都是基於這種原理。

(2)衍射像:電子束被樣品衍射後,樣品不同位置的衍射波振幅分布對應於樣品中晶體各部分不同的衍射能力,當出現晶體缺陷時,缺陷部分的衍射能力與完整區域不同,從而使衍射波的振幅分布不均勻,反映出晶體缺陷的分布。

(3)相位像:當樣品薄至100Å以下時,電子可以穿過樣品,波的振幅變化可以忽略,成像來自於相位的變化。

5、掃描電子顯微鏡的工作原理

掃描電子顯微鏡的工作原理:

掃描電子顯微鏡的製造依據是電子與物質的相互作用。

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

當一束極細的高能入射電子轟擊掃描樣品表面時,被激發的區域將產生二次電子、俄歇電子、特徵x射線和連續譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區域產生的電磁輻射。同時可產生電子-空穴對、晶格振動(聲子)、電子振盪(等離子體)。

(5)sem掃描擴展資料:

研發歷程:

1873 Abbe 和Helmholfz 分別提出解像力與照射光的波長成反比。奠定了顯微鏡的理論基礎。

1931德國物理學家Knoll 及Ruska 首先發展出穿透式電子顯微鏡原型機。

1938 第一部掃描電子顯微鏡由Von Ardenne 發展成功。

1959年第一台100KV電子顯微鏡 1975年第一台掃描電子顯微鏡DX3 在中國科學院科學儀器廠(現北京中科科儀技術發展有限責任公司)研發成功。

6、SEM掃描電鏡圖怎麼看,圖上各參數都代表什麼意思

1、放大率:

與普通光學顯微鏡不同,在SEM中,是通過控制掃描區域的大小來控制放大率的。如果需要更高的放大率,只需要掃描更小的一塊面積就可以了。放大率由屏幕/照片面積除以掃描面積得到。

所以,SEM中,透鏡與放大率無關。

2、場深:

在SEM中,位於焦平面上下的一小層區域內的樣品點都可以得到良好的會焦而成象。這一小層的厚度稱為場深,通常為幾納米厚,所以,SEM可以用於納米級樣品的三維成像。

3、作用體積:

電子束不僅僅與樣品表層原子發生作用,它實際上與一定厚度范圍內的樣品原子發生作用,所以存在一個作用「體積」。

4、工作距離:

工作距離指從物鏡到樣品最高點的垂直距離。

如果增加工作距離,可以在其他條件不變的情況下獲得更大的場深。如果減少工作距離,則可以在其他條件不變的情況下獲得更高的解析度。通常使用的工作距離在5毫米到10毫米之間。

5、成象:

次級電子和背散射電子可以用於成象,但後者不如前者,所以通常使用次級電子。

6、表面分析:

歐革電子、特徵X射線、背散射電子的產生過程均與樣品原子性質有關,所以可以用於成分分析。但由於電子束只能穿透樣品表面很淺的一層(參見作用體積),所以只能用於表面分析。

表面分析以特徵X射線分析最常用,所用到的探測器有兩種:能譜分析儀與波譜分析儀。前者速度快但精度不高,後者非常精確,可以檢測到「痕跡元素」的存在但耗時太長。

觀察方法:

如果圖像是規則的(具螺旋對稱的活體高分子物質或結晶),則將電鏡像放在光衍射計上可容易地觀察圖像的平行周期性。

尤其用光過濾法,即只留衍射像上有周期性的衍射斑,將其他部分遮蔽使重新衍射,則會得到背景干擾少的鮮明圖像。

(6)sem掃描擴展資料:

SEM掃描電鏡圖的分析方法:

從干擾嚴重的電鏡照片中找出真實圖像的方法。在電鏡照片中,有時因為背景干擾嚴重,只用肉眼觀察不能判斷出目的物的圖像。

圖像與其衍射像之間存在著數學的傅立葉變換關系,所以將電鏡像用光度計掃描,使各點的濃淡數值化,將之進行傅立葉變換,便可求出衍射像〔衍射斑的強度(振幅的2乘)和其相位〕。

將其相位與從電子衍射或X射線衍射強度所得的振幅組合起來進行傅立葉變換,則會得到更鮮明的圖像。此法對屬於活體膜之一的紫膜等一些由二維結晶所成的材料特別適用。

掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接受、放大和顯示成像,獲得測試試樣表面形貌的觀察。

7、掃描透射電鏡(STEM)有哪些特點

透射電鏡(TEM)和掃描透射電鏡(STEM)都是使用電子束使樣品成像的相關技術。使用高能電子作用於超薄樣本使成像解析度達1-2埃的數量級。與SEM相比,TEM具有更好的空間解析度,更適用於若干分析測量。但需要多得多的樣品准備. 雖然比大多數其他常見分析工具更費時,但是這些實驗的寶貴信息是令人贊嘆的。 你不僅可以取得優異圖像解析度、結晶狀態、晶向(都以衍射實驗模式)、元素圖(使用EDS)、突出元素對比度的圖象 (暗場模式)-所有這些都來自可精確定位的納米尺寸大小的面積。STEM和TEM可以作為薄膜及IC樣品的最終失效分析工具。

8、掃描電鏡(SEM)測試是怎麼收費的

掃描電鏡(SEM)測試各地不一樣的,最少的也要幾百塊啊

9、掃描電鏡sem的主要原理是什麼?測試過程需要重點注意哪些操作

電鏡的原理是:電子槍發出電子束打到樣品表面,激發出二次電子、背散射電子、X-ray等特徵信號,經收集轉化為數字信號,得到相應的形貌或成分信息。
測試注意事項:
1、新人找別人幫忙測試時,
明確自己的測試內容,如何樣品前處理,測試時間,然後跟測試相關人員聯系確定能否滿足你的測試需求
2、新人自己操作測試時,
明確自己的測試內容,如何樣品前處理,測試時間,
測試時注意樣品乾燥潔凈,操作時樣品和樣品台避免撞到探頭

10、掃描電鏡sem和透射電鏡tem對樣品有何要求

透射電鏡是用高能電子束(加速電壓一般在200KV以上)照射樣品,透過樣品的電子由於樣品厚度、元素、缺陷、晶體結構等的不同,會產生不同的花樣或圖像襯度,由此可以推測樣品的相關信息。由於電子束要能透過樣品,因此樣品厚度要求很薄,一般要小於100納米。如果要做高分辨,要求更薄。

與sem掃描相關的知識