1、新媒體,大數據跟企業發展之間是怎樣的關系
瀉葯!
新媒體(微信,微博等)是互聯網跟實體的一座橋梁,未來社會的形態也是線上線下的聯動。
大數據對於企業的應用,除了內部信息整合,還有外部信息採集。
內部的不說了。
說說外部。
外部來說,就涉及到信息採集,還有採集後的工作,可以成為輿情監測。
論壇、微博、博客、新聞評論作是目前網民在網路上發表個人意見的四大陣地,由於網民的數量龐大,發表信息沒有門檻,相關信息傳播速度極快,其形成的力量對於公司的品牌形象及產品的口碑正發揮著越來越大的影響。-采34534533集-
網路上用戶的評論中的贊揚、喜好、抱怨等信息其實蘊含著巨大的商機,它是我們窺探競爭對手產品弱點以及發現新的用戶需求與喜好的豐富來源。這些信息對於公關部門、品牌部門、研發部門深入了解用戶狀態與心理非常有幫助。
網路口碑在很大程度上也是現實口碑的一種反映,無論是正面評價還是負面評價都可以被迅速傳播,而其中的負面評價更會被迅速放大。好的口碑傳播可以推動企業的產品銷售,而負面口碑的傳播可以迅速導致企業的危機。
對於一家知名企業,關於網路口碑需要了解以下問題:
用戶意見表達平台中關於自己品牌的言論有哪些?分屬哪些類別?哪些具有重要反饋意義?哪些具有正面價值?哪些具有負面價值?究竟是誰在何時發表的這個意見?有多少人看了這個意見?有多少人回復了這個意見?哪些需要引導?哪些需要應對?哪些需要危機預警?26禁止9盜用0
用戶意見表達平台中關於競爭品牌的言論有哪些?分屬哪些類別?哪些具有重要反饋意義?哪些具有正面價值?哪些具有負面價值?哪些需要利用?
實時收集分類整理用戶的各種評價信息是公司口碑監測的重點。
這就需要信息採集系統和輿情監測系統了。
它們工作原理,或者說解決方案就是這樣的,這一類的系統一般是基於web2db knowlesys這一類的技術,這類技術的特點就有事抓得多同事抓得准,把標題,日期等都抓回來了。
2、傳統的會計行業如何與人工智慧、大數據、新媒體、等新興科技手段相結合?
你好。其實這個傳統行業要是能夠跟現在的技術結合起來,那確實還是比較好的。
其實已經有很多地方有這些應用了,在做大數據,人工智慧等方面,其實還要是會用到一些統計學方面的一些內容。這個跟會計方面的一些知識也是能夠聯繫到一起的。
不過要想在會計行業能夠把這些科技手段應用起來的話,還是需要一些更方便的數據處理軟體,不只是excel目前這樣子的。
3、大數據與新媒體之間又存在著什麼樣的聯系呢?大數據給新媒體帶來了哪些新變化?
大數據之所以可能成為一個時代,在很多程度上是因為這是一個可以由社會各界廣泛參與,八面出擊,處處結果的社會運動,而不僅僅是少數專家學者的研究對象。數據產生於各行各業,這場變革也必將影響到各行各業,因此,機遇也蘊含於各行各業。致力於IT創業的人們緊緊盯著這個市場,洞察著每一個機遇。
數據對於科學進步有推動的作用,而海量數據對數據的分析既帶來了機遇,也構成了新的挑戰。隨著大數據的迅速發展,許多企業開始著手於大數據分析項目。大數據的能量和其為企業帶來的競爭力優勢已經逐漸顯現,現在大數據已經成為商業智能、分析和數據管理市場領域中討論度最高的話題之一,當然也是最熱門的流行語之一。
如果說雲計算主要提供了強大的後台運算能力,對大眾來說,看不見摸不著;那麼大數據卻是和人們的生活緊密相關的。大數據應用隨處可見可感可知。
未來會在內容自動采編、智能個性化推薦、數字化設備皮膚化(可穿戴設備、人體植入式設備...)的基礎上,形成一個跨平台(SEM、展示廣告位、信息流廣告位、訂閱推薦位...)、跨內容形式(文本、流媒體...)、跨交易類型(用戶付費訂閱、用戶付費購買、廣告主付費推廣、平台付費內容采編...)的內容交易所。
4、新媒體中大數據的應用有哪些?
新 媒 體 大 數 據 應 用 場 景 主 要 為 以 下 四 個 方 面 :
1 、 政 務 治 理 方 面 ;
包 含 輿 情 監 測 、 風 險 發 現 , 風 險 防 范 、 風 險 判 斷 、 應 急 指 揮 、 精 准 調 研 、 議 題 引 導 、 引 導 效 果 評 估 、 決 策 輔 助 等 。
2 、 企 業 品 牌 管 理 方 面 ;
包 含 品 牌 口 碑 管 理 、 品 牌 傳 播 管 理 、 品 牌 戰 略 管 理 ( 競 爭 力 評 估 、 行 業 環 境 評 估 等 )
3 、 媒 體 傳 播 方 面 ;
包 含 追 蹤 熱 點 、 編 輯 選 題 、 數 據 新 聞 等
4 、 科 研 教 學 方 面 ;
包 含 學 校 師 生 研 究 課 題 、 教 學 案 例 等
新 媒 體 大 數 據 已 運 用 到 工 作 生 活 的 方 方 面 面 , 政 企 單 位 如 有 新 媒 體 大 數 據 需 求 , 可 選 擇 新 浪 輿 情 通 , 新 媒 體 大 數 據 服 務 平 台 , 打 造 場 景 化 大 數 據 應 用 。 政 企 用 戶 前 往 官 網 免 費 注 冊 使 用 。。您的採納是對我工作的支持
5、大數據時代下新媒體廣告有哪些特點
實效性
報紙、雜志的廣告內容基本無法做到實效,除了發行當時一段時間,之後這些廣告將成為歷史,也無人會關注。而新媒體廣告用戶的主動性,互聯網引擎本身的時間優先性,再經過卓戰科技大數據分析使得新媒體給用戶的信息都是最近的。
轉化率高
轉化率就是從廣告變成成交的幾率,和傳統媒體相比,新媒體廣告,連接的是強大的電商平台,迅捷的成交過程,方便得物流過程,還沒等興奮衰減,已經支付完成了。之後就是該受眾會進行更興奮的自我修復過程,分享、朋友圈。
交互性強
與傳統媒體單向發送來等魚上鉤這種模式相比,大數據新媒體使用的是按需要推送,受眾可以通過各種渠道來主動獲取所需的廣告信息。比如說通過引擎搜索來搜尋,手機app來檢索。
便利性且廣告模式靈活
互聯網廣告無處不在,可以在你的手機里,電腦上,接頭的LED大屏幕,地鐵里,只需要打開你手頭上的屏幕,如手機平板電腦等,這些都是隨身而致的。可以通過點擊付費,關注付費,而不是數人流量這種粗獷的方式。
具有精準性
當用戶自己需要某些廣告的時候,卓戰科技大數據下的新媒體會過濾掉許多與搜索內容無關的廣告內容,從而達到由需求帶入廣告的精準性。
6、大數據在軍事領域有哪些應用
在軍事上,用小數據時代的理念和技術,很難與大數據時代的思維和技能相對抗。面對大數據時代的軍事機遇和挑戰,要麼主動進擊,要麼被動跟進,難以置之度 外。其間的取捨與成敗,首先有賴於思維變革,其要求全體軍事人員尤其是指揮員,更加具備基於體系作戰的系統思維、基於數據模型的精確思維及基於對戰爭進行 科學預設的前瞻思維。
大數據創新了軍事管理方法,且這種創新是全方位的--除了可以提高包含閱兵在內的軍事訓練水平,還可以:
1.提高軍事管理水平
管理大師戴明與德魯克都曾提出:「不會量化就無法管理」。數據的根本價值之一,就是可作為管理依據。大數據應用的特點是強調分析與某事物相關的總體數據, 而不是抽取少量的數據樣本;大數據關注事物的混雜性,而不追求事物的精確性;大數據注重事物的相關關系,而不探求其間的因果關系。
將大數據應用於軍事領域,意味著軍事管理將更加剛性,基本不受人為因素的影響,且更加自動化。所以說,大數據強軍的內涵,本質上是軍事管理科學化程度的提 高,即與小數據比起來,由於有了大數據,軍事管理活動量化程度更高了,工具更加先進了,邊界更加寬廣了,管理質量、效率會隨之更高。
2.豐富軍事科研方法
通常人們研究戰爭機理、找尋戰爭規律的方法有三種,又稱為三大範式:實驗科學範式,在戰前通過反復的實兵對抗演習來論證和改進作戰方案;理論科學範式,採用數學公式描述交戰的過程,如經典的蘭徹斯特方程;計算科學範式,基於計算機開發出模擬系統來模擬不同作戰單元之間的交戰場景。
但是,上述研究範式只能使人們感知交戰的過程和結果,並未有效提高對海量數據的管理、存儲和分析能力。
以大數據為核心技術的數據挖掘模式被稱為第四戰爭研究範式。人 們可以有效利用大數據,探尋信息化戰爭的內在規律,而不是被淹沒在海量數據中一籌莫展。大數據研究範式由軟體處理各種感測器或模擬實驗產生的大量數據,將 得到的信息或知識存儲在計算機中,基於數據而非已有規則編寫程序,再利用包括量子計算機在內的各種高性能計算機對海量信息進行挖掘,由計算機智能化尋找隱 藏在數據中的關聯,從而發現未知規律,捕獲有價值的情報信息。
例如,在第一次海灣戰爭前,美軍就利用改進的「兵棋」,對戰爭進程、結果及傷亡人數進行了推演,推演結果與戰爭的實際結果基本一致。而在伊拉克戰爭前,美 軍利用計算機兵棋系統進行演習,推演「打擊伊拉克」作戰預案。隨後美軍現實中進攻伊拉克並取得勝利的行動,也和兵棋推演的結果幾乎完全一致。
作戰模擬早已經從人工模式轉變為計算機模式,再加上大數據,戰前的模擬推演,從武器使用、戰爭打法到指揮手段,都可以清晰地顯現,是非常好的戰時決策依據。一旦發現作戰計劃有問題,可以及時調整,以確保實戰傷亡最小並取得勝利。
3.加速型武器裝備面世
大數據在武器裝備上的廣泛應用,意味著武器裝備建設將從重視研發信息系統到重視數據處理與應用的轉變,從注重信息系統的互聯互通到注重信息系統的透明性互 操作的轉變。當前武器裝備的信息化程度越來越高,裝備體系內各個節點之間的信息共享也越來越方便、可靠,但由此也帶來了一些突出問題,如原始信息規模過 大、價值不夠高、直接提取所需信息的難度增加等,從而使得武器裝備體系在信息獲取效率上大打折扣。在這種背景下產生的大數據為解決上述問題提供了有效方 法。
需要說明的是:大數據應用不僅意味著人們要以創新方式使用海量數據,還意味著人們要採用人工智慧技術來處理自然文本和進行知識表述,以替代目前依賴專家和技術人員昂貴而又耗時的信息處理方式。
大數據與人工智慧是一而二、二而一的關系。受益於大數據技術,武器裝備體系將從戰場上的信息使用者升級為高度智能化和自主化的系統。其具體流程為:經 過智能處理後的高價值信息進入戰場網路鏈路後,與戰場網路融為一體的武器裝備體系能實時自動感知面臨的有關威脅,各裝備節點自動感知包括我情和敵情在內的 戰場態勢,在作戰人員的有限參與下高度自主地分解作戰任務,確定作戰目標和行動方案,經過適當的審批流程後執行相關的作戰行動。
在這方面走在前列的仍然是美軍。美軍大數據研究的第一個重要目標是通過大數據創建真正能自主決策、自主行動的無人系統。這一點已在無人機領域實現。美軍希 望無人機可以完全擺脫人的控制而實現自主行動。美軍2013年試飛的X-47B就是這一系統的代表,它已經可以在完全無人干預的情況下自動在航母上完成起 降並執行作戰任務。
4.提升情報分析能力
19世紀初,軍事戰略家克勞塞維茨以人的認知局限為由,提出了「戰爭迷霧」概念。顯然,「戰爭迷霧」即「數據迷霧」。信息戰首先得消除「戰爭迷霧」。信息 戰是體系對體系的戰爭,而這一體系是一個超級復雜的巨大系統,僅諸軍兵種龐雜的武器裝備和作戰環境數據,就足以大到使普通的信息處理能力捉襟見肘;而敵我 對抗的復雜化,更是讓數據量呈爆炸式增長,從而帶來比傳統戰爭更多的「數據迷霧」。可以說,信息化戰爭的機制深藏在「數據迷霧」中。
消除「戰爭迷霧」會提高指揮員的情報分析與軍情預測能力。過去,由於可以掌握的數據不足,戰爭的不確定性很高,指揮員很容易陷在「戰爭迷霧」之中。而大數據最重要的價值之一是預測,即把數據演算法運用到海量的數據上來預測事情發生的可能性。
具體而言,未來完全可能依託大數據分析處理技術和建構模型,通過數據挖掘模式,從海量數據中挖掘出有價值的信息,及時准確掌握敵方的戰略企圖、作戰規律和 兵力配置,真正做到「知己知彼」,使戰場變得清晰透明,從而撥開「戰爭迷霧」,達成運籌於帷幄之中、決勝於千里之外的作戰目的。
對此趨勢,很多國家及其軍隊都極為看重。例如,美軍明確提出,要通過大數據將其情報分析能力提高100倍以上。如果這一目標實現,那麼在這一領域其他國家 與美軍的差距,將難以用簡單的「代差」來描述。美軍通過多年的發展,已擁有全球最先進的情報偵察系統,因為對海量情報數據的分析,曾是美軍情報偵察能力的 瓶頸,而大數據正好能夠幫助美軍突破這一瓶頸。
大數據時代,往往不要求准確知道每一個精確的細節,只需了解事物的概略全貌即可。通過相關數據信息的大量積累,而不是對某個具體數據的精確分析,大數據技 術可以為我們提煉出事物運行的規律,並判斷其發展趨勢。例如,2011年美軍擊斃本·拉登的「海神之矛」行動,就有賴上千名數據分析員長達10年數據積累 的支撐。換言之,是大數據抓住了本·拉登。
5.引領指揮決策方式變革
管理的核心是決策。大數據帶來的重要變革之一,是決策的思維、模式和方法的變革。建立在小數據時代基於經驗的決策,將讓位於大數據時代基於全樣本數據的決策。
決策是進行數據分析、行動方案設計並最終選擇行動方案的過程。軍事決策建立在對敵情的正確分析預測之上,其目的是通過合理分配兵力兵器,優選打擊目標,設計完成任務的最佳行動方法與步驟。
以往的戰爭,做出作戰決策時缺少足夠數據支持,甚至數據本身的真實性、准確性也難以保證。目前信息化條件下的戰爭,各種條件都變成了數據,這就要求指揮人 員必須掌握分析海量數據的工具和能力。以往,指揮人員更多的是依靠經驗進行相對概略或粗放式決策。大數據的出現必將要求指揮人員以全新的數據思維來進行指 揮決策。這種決策將有幾個特點:
一是准確。只要提供的數據量足夠龐大真實,通過數據挖掘模式,就可以較為准確地把握敵方指揮員的思維規律,預測對手的作戰行動,掌控戰場態勢的發展變化等。
二是迅速。大數據相關技術所提供的高速計算能力有助於指揮員更加迅速地設計行動方案。
三是自動化。針對特定的作戰對手和作戰環境,大數據系統可以自動對己方成千上萬、功能互補的作戰單 元或平台進行模塊化編組,從而實現整體作戰能力的最優化;面對眾多性質不同、防護力不同且威脅度各異的打擊目標,大數據系統可以自動對有限數量、有限強度 和有限精度的火力進行分配,以收獲最大作戰效益。
在大數據時代的戰爭中,軍事專家、技術專家的光芒會因為統計學家、數據分析家的參與而變暗,因為後者不受舊觀念的影響,能夠聆聽數據發出的「聲音」。
總之,基於數據的定量決策將和基於經驗的定性決策同樣重要,基於經驗的決策將很大程度上讓位給全樣本決策,基於大數據的決策手段將從輔助決策的次要地位上升到支撐決策的重要地位。
對此,美軍的認識是最到位的。美軍發布的《2013-2017年國防部科學技術投資優先項目》就將「從數據到決策」項目排在了第一位,凸顯了大數據對其指揮決策方式的巨大影響。
6.優化作戰指揮流程
網路日益普及的情況下,信息的流通與共享已不是難題,人們開始關注對信息的認識,及將信息轉化為知識的能力。
與之相適應,軍事信息技術也從關注「T」(Technology)的階段,向關注「I」(Information)的階段轉變;從建設指揮自動化系統 (C4ISR),即指揮、控制、通信、計算機、情報及監視與偵察等信息系統,整體管理「戰場信息的獲取、傳遞、處理和分發」的全信息流程;發展至重視大數 據處理應用,綜合集成數據採集、處理平台和分析系統,統一優化管理「戰場數據採集、傳遞、分析和應用」的全數據流程。即通過對海量數據進行開發處理,大幅 度提高從中提取高價值情報的能力,從而實現對戰場綜合態勢的實時感知、同步認知,進一步壓縮「包以德循環」(OODA Loop),即觀察-調整-決策-行動的指揮周期,縮短「知謀定行」時間,提高快速反應能力。
隨著數據挖掘技術、大規模並行演算法及人工智慧技術的不斷完善並廣泛應用在軍事上,情報、決策與作戰一體化將取得快速進展。在武器裝備上,將特別注重各作戰 平台的系統融合和無縫鏈接,以保證戰場信息的實時快速流轉,縮短從「感測器到射手」的時間差,實現「發現即摧毀」的作戰目標。
比如近幾年迅速發展的無人機作戰平台,其本質就是一個智能系統。其可以成建制地對實時捕獲的重要目標進行「發現即摧毀」式的精確打擊,還能通過融合情報的 前端和後端,使數據流程與作戰流程無縫鏈接並相互驅動,構建全方位遂行聯合作戰的「偵打一體」體系,從而實現了體系化的「從感測器到射手」的重大突破。
7.推動戰爭形態的演變
大數據可以改變未來的戰爭形態。美軍一直追求從感測器到平台的實時打擊能力,追求零傷亡。
由大數據支撐的擁有自主能力的無人作戰平台,將使得這些追求成為可能。例如,目前全世界最先進的無人偵察機「全球鷹」,能連續監視運動目標,准確識別地面 的各種飛機、導彈和車輛的類型,甚至能清晰分辨出汽車輪胎的類型。現今,美空軍的無人機數量已經超過了有人駕駛的飛機,或許不久的將來,美軍將向以自主無 人系統為主的,對網路依賴度逐漸降低的「數據中心戰」邁進。
無人機能否做到實時地對圖像進行傳輸非常關鍵。
目前,美國正使用新一代極高頻的通訊衛星作為大數據平台的支撐。未來,無人機甚至有可能擺脫人的控制實現完全的自主行動。美軍試驗型無人戰斗機X-47B就是這一趨勢的代表,它已經可以在完全無人干預的情況下,自動在航母上完成起降並執行作戰任務。
總之,基於大數據的實時、無人化作戰,將徹底改變人類幾千年來以有生力量為主的戰爭形態。
8.引導軍事組織形式變革
大數據即大融合,它有望打破軍種之間的壁壘,解決軍隊跨軍種、跨部門協作的問題,真正實現一體化作戰。
就組織形態而言,扁平結構、層次簡捷、高度集成、體系融合應該更符合大數據時代的要求。軍事方面的相關趨勢有:
(1)網狀化。軍隊的指揮體系逐步發展為「指揮網」,原先的「樹狀結構」變為 「網狀結構」。一個師的指揮系統一旦被打垮,師以下各級可通過「網」與上級或其他作戰單元聯系。這就改變了傳統軍事指揮體系由「樹干、樹枝、樹葉」編成的 組織形態,避免了機械化戰爭時期「打斷一枝、癱瘓一片」的指揮弊端,有效提高了局部戰爭中的指揮效能。
(2)小型化。發達國家的陸軍多由軍、師、團、營體制向軍、旅、營制轉變,使作戰集團更加輕便靈活,機動性更強。 根據部隊的不同功能優化組合,基本作戰單位不需要加強補充就能實施多種作戰,從而全面提高應對多種安全威脅,完成多樣化軍事任務的能力。將營作為基本戰術 「模塊」,將旅作為基本合成單位,以搭積木方式進行編組,戰時根據需要臨時編組,看迅速生成擔負不同作戰任務的部隊。
世界各主要國家都非常重視軍隊組織形態變革,並致力於發展新興軍兵種,及時設計和建設新型部隊。
2009年,美國國防部宣布組建網路戰司令部。2013年3月,美國網路戰司令部司令亞力山大宣布,美國將增加40支網路戰部隊。美國、俄羅斯等國都在積極籌劃或正在建設能在太空進行作戰的「天軍」部隊、「機器人」部隊。
隨著新興軍兵種的建立,軍隊的組織形態將出現新面貌,未來戰爭的觸角不斷延伸,網路、電磁頻譜領域的爭奪方興未艾,太空不再是寂寞世界,天戰也不再遙遠。
(3)一體化。軍隊信息化必然要求一體化,信息化程度越高,一體化特徵越明顯。適應新形勢下強軍目標的要求,我軍必須對戰鬥力要素進行一體化整合,推進武裝力量一體化、軍隊編成一體化、指揮控制一體化、作戰要素一體化,提高整體效益。
9.大數據將使體系作戰能力大幅提升
從作戰手段角度看,大數據及其支撐的新型武器裝備的應用,將豐富軍隊的作戰體系;從作戰效能角度看,大數據下的作戰行動循環(包以德循環)所耗時間將大為縮短,更符合「未來戰爭不是大吃小,而是快吃慢」的制勝規律。相關變革的結果,將是軍隊體系作戰能力大幅提升。
10.提升軍隊的信息化建設水平
大數據給了各國軍隊(尤其是像我軍這樣的信息化發展水平參差不齊的軍隊)一個契機,可以牽引、拉動自身的信息化建設向更高層次發展,同時拉齊整體水平,因為大數據意味著「整體」。
具體來說,應以提高決策速度、反應速度和聯合作戰能力為目標,以數據為中心,以搜索分析處理數據為中樞架構,自上而下建設軍事「數據網路」;加快組建雲計 算中心,把對大數據分析處理作為軍事信息化建設的重中之重,努力建構精確分析處理大數據的硬體系統、軟體模型,實現大數據「從數據轉化為決策」的智能化和 瞬時化。
同時,也要抓好末端的單兵及單件武器裝備的數據採集、存儲設備設計,從而為海量數據的挖掘和整合奠定基