導航:首頁 > 萬維百科 > jvmcms設置

jvmcms設置

發布時間:2021-03-24 20:29:16

1、怎麼給JVM加啟動參數?

有時候程序會碰到java.lang.OutOfMemoryError,這個主要是JVM啟動參數沒有配好引起的,打開eclipse的eclipse.ini會看版到如下權參數:

-vmargs
-Xms128M
-Xmx512M
-XX:PermSize=64M
-XX:MaxPermSize=128M
-vmargs:用來說明後面的就是JVM的參數了
-Xms:JVM初始分配的堆內存
-Xmx:JVM最大允許分配的堆內存,按需分配
-XX:PermSize:JVM初始分配的非堆內存
-XX:MaxPermSize:JVM最大允許分配的非堆內存,按需分配

2、如何設置JVM參數

設置eclipse jvm參數

打開Eclipse 或者 MyEclipse

打開 Windows -> Preferences -> Java -> Installed JREs 

選中你所使用的 JDK,然後點擊 Edit,會出現如下圖:

在 Default VM Arguments輸入框內輸入: -Xms512m -Xmx512m

解釋:

-Xms是設置java虛擬機的最小分配內存;-Xmx則是最大分配內存;512m為內存空間

一般-Xmx設置為你電腦物理內存的1/4,而把-Xms和 -Xmx設置為一樣,

其實你可以設置得更大一些,只要系統能分配足夠的內存就可以了,如果設置過大系統會提示你的。

3、jvm cms stop the world進程什麼意思

JVM有個叫做「安全點」和「安全區域」的東西,在發生GC時,所有的線程都會執行到「安全點」停下來。

在需要GC的時候,JVM會設置一個標志,當線程執行到安全點的時候會輪詢檢測這個標志,如果發現需要GC,則線程會自己掛起,直到GC結束才恢復運行。

體系結構:

每個Java程序都離不開Java虛擬機,Java程序的運行依靠具體的Java虛擬機實例。在Java虛擬機規范中,分別用子系統、內存區、數據類型以及指令這幾個術語來描述的。這些組成部分一起展示出一個抽象化的虛擬機內部的抽象體系結構。

(3)jvmcms設置擴展資料:

內存管理:

對於Java運行時涉及到的存儲區域主要包括程序計數器、Java虛擬機棧、本地方法棧、java堆、方法區以及直接內存等等。對於每個部分,都有其使用的條件。程序計數器主要是取下一條指令,在Java裡面主要是取下一條指令的位元組碼文件。

Java虛擬機棧主要是利用棧先進後出的特性存儲局部變數表,動態鏈接等,主要包括堆內存和棧內存,對於程序員內存分析而言是特別重要的。

本地方法棧與上邊的棧基本作用差不多,只不過這里是為Java方法而服務。Java堆是內存管理中最大的一塊,所有的線程共享這一塊內容,同時該部分也是垃圾收集器的主要區域。

4、JVM參數如何設置?(二)

ii、吞吐量優先的應用:盡可能的設置大,可能到達Gbit的程度.因為對響應時間沒有要求,垃圾收集可以並行進行,一般適合8CPU以上的應用.iii、避免設置過小.當新生代設置過小時會導致:1.YGC次數更加頻繁 2.可能導致YGC對象直接進入舊生代,如果此時舊生代滿了,會觸發FGC.2、年老代大小選擇i、響應時間優先的應用:年老代使用並發收集器,所以其大小需要小心設置,一般要考慮並發會話率和會話持續時間等一些參數.如果堆設置小了,可以會造成內存碎 片,高回收頻率以及應用暫停而使用傳統的標記清除方式;如果堆大了,則需要較長的收集時間.最優化的方案,一般需要參考以下數據獲得:並發垃圾收集信息、持久代並發收集次數、傳統GC信息、花在年輕代和年老代回收上的時間比例。ii、吞吐量優先的應用:一般吞吐量優先的應用都有一個很大的年輕代和一個較小的年老代.原因是,這樣可以盡可能回收掉大部分短期對象,減少中期的對象,而年老代盡存放長期存活對象.iii、較小堆引起的碎片問題因為年老代的並發收集器使用標記,清除演算法,所以不會對堆進行壓縮.當收集器回收時,他會把相鄰的空間進行合並,這樣可以分配給較大的對象.但是,當堆空間較小時,運行一段時間以後,就會出現"碎片",如果並發收集器找不到足夠的空間,那麼並發收集器將會停止,然後使用傳統的標記,清除方式進行回收.如果出現"碎片",可能需要進行如下配置:-XX:+UseCMSCompactAtFullCollection:使用並發收集器時,開啟對年老代的壓縮.-XX:CMSFullGCsBeforeCompaction=0:上面配置開啟的情況下,這里設置多少次Full GC後,對年老代進行壓縮iv、用64位操作系統,Linux下64位的jdk比32位jdk要慢一些,但是吃得內存更多,吞吐量更大v、XMX和XMS設置一樣大,MaxPermSize和MinPermSize設置一樣大,這樣可以減輕伸縮堆大小帶來的壓力vi、使用CMS的好處是用盡量少的新生代,經驗值是128M-256M, 然後老生代利用CMS並行收集, 這樣能保證系統低延遲的吞吐效率。 實際上cms的收集停頓時間非常的短,2G的內存, 大約20-80ms的應用程序停頓時間vii、系統停頓的時候可能是GC的問題也可能是程序的問題,多用jmap和jstack查看,或者killall -3 java,然後查看java控制台日誌,能看出很多問題。(相關工具的使用方法將在後面的blog中介紹)viii、仔細了解自己的應用,如果用了緩存,那麼年老代應該大一些,緩存的HashMap不應該無限制長,建議採用LRU演算法的Map做緩存,LRUMap的最大長度也要根據實際情況設定。ix、採用並發回收時,年輕代小一點,年老代要大,因為年老大用的是並發回收,即使時間長點也不會影響其他程序繼續運行,網站不會停頓x、JVM參數的設置(特別是 –Xmx –Xms –Xmn -XX:SurvivorRatio -XX:MaxTenuringThreshold等參數的設置沒有一個固定的公式,需要根據PV old區實際數據 YGC次數等多方面來衡量。為了避免promotion faild可能會導致xmn設置偏小,也意味著YGC的次數會增多,處理並發訪問的能力下降等問題。每個參數的調整都需要經過詳細的性能測試,才能找到特定應用的最佳配置。

5、如何查看GC 及jvm配置?

java雖然是自動回收內存,但是應用程序,尤其伺服器程序最好根據業務情況指明內存分配限制。否則可能導致應用程序宕掉。

舉例說明含義:
-Xms128m
表示JVM Heap(堆內存)最小尺寸128MB,初始分配
-Xmx512m
表示JVM Heap(堆內存)最大允許的尺寸256MB,按需分配。

說明:如果-Xmx不指定或者指定偏小,應用可能會導致java.lang.OutOfMemory錯誤,此錯誤來自JVM不是Throwable的,無法用try...catch捕捉。

PermSize和MaxPermSize指明虛擬機為java永久生成對象(Permanate generation)如,class對象、方法對象這些可反射(reflective)對象分配內存限制,這些內存不包括在Heap(堆內存)區之中。

-XX:PermSize=64MB 最小尺寸,初始分配
-XX:MaxPermSize=256MB 最大允許分配尺寸,按需分配
過小會導致:java.lang.OutOfMemoryError: PermGen space

MaxPermSize預設值和-server -client選項相關。
-server選項下默認MaxPermSize為64m
-client選項下默認MaxPermSize為32m

經驗:
1、慎用最小限制選項Xms,PermSize已節約系統資源。

=========================================================

近期研究對jvm的內存使用情況進行監控,因此對觀察虛擬機的內存使用方法做了一些收集,對jvm的參數設置了解了一下:

幾個基本概念:

PermGen space:全稱是Permanent Generation space,即永久代。就是說是永久保存的區域,用於存放Class和Meta信息,Class在被Load的時候被放入該區域,GC(Garbage Collection)應該不會對PermGen space進行清理,所以如果你的APP會LOAD很多CLASS的話,就很可能出現PermGen space錯誤。
Heap space:存放Instance。Java Heap分為3個區,Young即新生代,Old即老生代和Permanent。Young保存剛實例化的對象。當該區被填滿時,GC會將對象移到Old區。Permanent區則負責保存反射對象。

幾個參數設置的意義:

xms/xmx:定義YOUNG+OLD段的總尺寸,ms為JVM啟動時YOUNG+OLD的內存大小;mx為最大可佔用的YOUNG+OLD內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
NewSize/MaxNewSize:定義YOUNG段的尺寸,NewSize為JVM啟動時YOUNG的內存大小;MaxNewSize為最大可佔用的YOUNG內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
PermSize/MaxPermSize:定義Perm段的尺寸,PermSize為JVM啟動時Perm的內存大小;MaxPermSize為最大可佔用的Perm內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
SurvivorRatio:設置YOUNG代中Survivor空間和Eden空間的比例

申請一塊內存的過程:

A. JVM會試圖為相關Java對象在Eden中初始化一塊內存區域
B. 當Eden空間足夠時,內存申請結束。否則到下一步
C. JVM試圖釋放在Eden中所有不活躍的對象(這屬於1或更高級的垃圾回收);釋放後若Eden空間仍然不足以放入新對象,則試圖將部分Eden中活躍對象放入Survivor區/OLD區
D. Survivor區被用來作為Eden及OLD的中間交換區域,當OLD區空間足夠時,Survivor區的對象會被移到Old區,否則會被保留在Survivor區
E. 當OLD區空間不夠時,JVM會在OLD區進行完全的垃圾收集(0級)
F. 完全垃圾收集後,若Survivor及OLD區仍然無法存放從Eden復制過來的部分對象,導致JVM無法在Eden區為新對象創建內存區域,則出現」out of memory錯誤」

我們的一種resin伺服器的jvm參數設置:

「-Xmx2000M -Xms2000M -Xmn500M -XX:PermSize=250M -XX:MaxPermSize=250M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:=60 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log」

是一種典型的響應時間優先型的配置。

Java中有四種不同的回收演算法,對應的啟動參數為
–XX:+UseSerialGC
–XX:+UseParallelGC
–XX:+UseParallelOldGC
–XX:+UseConcMarkSweepGC

1. Serial Collector
大部分平台或者強制 java -client 默認會使用這種。
young generation演算法 = serial
old generation演算法 = serial (mark-sweep-compact)
這種方法的缺點很明顯,stop-the-world, 速度慢。伺服器應用不推薦使用。

2. Parallel Collector
在linux x64上默認是這種,其他平台要加 java -server 參數才會默認選用這種。
young = parallel,多個thread同時copy
old = mark-sweep-compact = 1
優點:新生代回收更快。因為系統大部分時間做的gc都是新生代的,這樣提高了throughput(cpu用於非gc時間)
缺點:當運行在8G/16G server上old generation live object太多時候pause time過長

3. Parallel Compact Collector (ParallelOld)
young = parallel = 2
old = parallel,分成多個獨立的單元,如果單元中live object少則回收,多則跳過
優點:old old generation上性能較 parallel 方式有提高
缺點:大部分server系統old generation內存佔用會達到60%-80%, 沒有那麼多理想的單元live object很少方便迅速回收,同時compact方面開銷比起parallel並沒明顯減少。

4. Concurent Mark-Sweep(CMS) Collector
young generation = parallel collector = 2
old = cms
同時不做 compact 操作。
優點:pause time會降低, pause敏感但CPU有空閑的場景需要建議使用策略4.
缺點:cpu佔用過多,cpu密集型伺服器不適合。另外碎片太多,每個object的存儲都要通過鏈表連續跳n個地方,空間浪費問題也會增大。

內存監控的方法:

1. jmap -heap pid
查看java 堆(heap)使用情況

using thread-local object allocation.
Parallel GC with 4 thread(s) //GC 方式

Heap Configuration: //堆內存初始化配置
MinHeapFreeRatio=40 //對應jvm啟動參數-XX:MinHeapFreeRatio設置JVM堆最小空閑比率(default 40)
MaxHeapFreeRatio=70 //對應jvm啟動參數 -XX:MaxHeapFreeRatio設置JVM堆最大空閑比率(default 70)
MaxHeapSize=512.0MB //對應jvm啟動參數-XX:MaxHeapSize=設置JVM堆的最大大小
NewSize = 1.0MB //對應jvm啟動參數-XX:NewSize=設置JVM堆的『新生代』的默認大小
MaxNewSize =4095MB //對應jvm啟動參數-XX:MaxNewSize=設置JVM堆的『新生代』的最大大小
OldSize = 4.0MB //對應jvm啟動參數-XX:OldSize=<value>:設置JVM堆的『老生代』的大小
NewRatio = 8 //對應jvm啟動參數-XX:NewRatio=:『新生代』和『老生代』的大小比率
SurvivorRatio = 8 //對應jvm啟動參數-XX:SurvivorRatio=設置年輕代中Eden區與Survivor區的大小比值
PermSize= 16.0MB //對應jvm啟動參數-XX:PermSize=<value>:設置JVM堆的『永生代』的初始大小
MaxPermSize=64.0MB //對應jvm啟動參數-XX:MaxPermSize=<value>:設置JVM堆的『永生代』的最大大小

Heap Usage: //堆內存分步
PS Young Generation
Eden Space: //Eden區內存分布
capacity = 20381696 (19.4375MB) //Eden區總容量
used = 20370032 (19.426376342773438MB) //Eden區已使用
free = 11664 (0.0111236572265625MB) //Eden區剩餘容量
99.94277218147106% used //Eden區使用比率
From Space: //其中一個Survivor區的內存分布
capacity = 8519680 (8.125MB)
used = 32768 (0.03125MB)
free = 8486912 (8.09375MB)
0.38461538461538464% used
To Space: //另一個Survivor區的內存分布
capacity = 9306112 (8.875MB)
used = 0 (0.0MB)
free = 9306112 (8.875MB)
0.0% used
PS Old Generation //當前的Old區內存分布
capacity = 366280704 (349.3125MB)
used = 322179848 (307.25464630126953MB)
free = 44100856 (42.05785369873047MB)
87.95982001825573% used
PS Perm Generation //當前的 「永生代」 內存分布
capacity = 32243712 (30.75MB)
used = 28918584 (27.57891082763672MB)
free = 3325128 (3.1710891723632812MB)
89.68751488662348% used

=====================================================================

jps
-q只輸出進程ID,而不輸出類的短名稱
-m用於輸出傳遞給Java進程(主函數)的參數
-l完整路徑
-v顯示傳遞給jvm的參數

6、如何設置jvm啟動參數

不管是YGC還是Full GC,GC過程中都會對導致程序運行中中斷,正確的選擇不同的GC策略,調整JVM、GC的參數,可以極大的減少由於GC工作,而導致的程序運行中斷方面的問題,進而適當的提高Java程序的工作效率。但是調整GC是以個極為復雜的過程,由於各個程序具備不同的特點,如:web和GUI程序就有很大區別(Web可以適當的停頓,但GUI停頓是客戶無法接受的),而且由於跑在各個機器上的配置不同(主要cup個數,內存不同),所以使用的GC種類也會不同(如何選擇見GC種類及如何選擇)。本文將注重介紹JVM、GC的一些重要參數的設置來提高系統的性能。
GC性能方面的考慮
對於GC的性能主要有2個方面的指標:吞吐量throughput(工作時間不算gc的時間占總的時間比)和暫停pause(gc發生時app對外顯示的無法響應)。
1. Total Heap
默認情況下,vm會增加/減少heap大小以維持free space在整個vm中占的比例,這個比例由MinHeapFreeRatio和MaxHeapFreeRatio指定。
一般而言,server端的app會有以下規則:
對vm分配盡可能多的memory;
將Xms和Xmx設為一樣的值。如果虛擬機啟動時設置使用的內存比較小,這個時候又需要初始化很多對象,虛擬機就必須重復地增加內存。
處理器核數增加,內存也跟著增大。
2. The Young Generation
另外一個對於app流暢性運行影響的因素是young generation的大小。young generation越大,minor collection越少;但是在固定heap size情況下,更大的young generation就意味著小的tenured generation,就意味著更多的major collection(major collection會引發minor collection)。
NewRatio反映的是young和tenured generation的大小比例。NewSize和MaxNewSize反映的是young generation大小的下限和上限,將這兩個值設為一樣就固定了young generation的大小(同Xms和Xmx設為一樣)。
如果希望,SurvivorRatio也可以優化survivor的大小,不過這對於性能的影響不是很大。SurvivorRatio是eden和survior大小比例。
一般而言,server端的app會有以下規則:
首先決定能分配給vm的最大的heap size,然後設定最佳的young generation的大小;
如果heap size固定後,增加young generation的大小意味著減小tenured generation大小。讓tenured generation在任何時候夠大,能夠容納所有live的data(留10%-20%的空餘)。
經驗&&規則
年輕代大小選擇
響應時間優先的應用:盡可能設大,直到接近系統的最低響應時間限制(根據實際情況選擇).在此種情況下,年輕代收集發生的頻率也是最小的.同時,減少到達年老代的對象.
吞吐量優先的應用:盡可能的設置大,可能到達Gbit的程度.因為對響應時間沒有要求,垃圾收集可以並行進行,一般適合8CPU以上的應用.
避免設置過小.當新生代設置過小時會導致:1.YGC次數更加頻繁 2.可能導致YGC對象直接進入舊生代,如果此時舊生代滿了,會觸發FGC.
年老代大小選擇
響應時間優先的應用:年老代使用並發收集器,所以其大小需要小心設置,一般要考慮並發會話率和會話持續時間等一些參數.如果堆設置小了,可以會造成內存碎 片,高回收頻率以及應用暫停而使用傳統的標記清除方式;如果堆大了,則需要較長的收集時間.最優化的方案,一般需要參考以下數據獲得:
並發垃圾收集信息、持久代並發收集次數、傳統GC信息、花在年輕代和年老代回收上的時間比例。
吞吐量優先的應用:一般吞吐量優先的應用都有一個很大的年輕代和一個較小的年老代.原因是,這樣可以盡可能回收掉大部分短期對象,減少中期的對象,而年老代盡存放長期存活對象.
較小堆引起的碎片問題
因為年老代的並發收集器使用標記,清除演算法,所以不會對堆進行壓縮.當收集器回收時,他會把相鄰的空間進行合並,這樣可以分配給較大的對象.但是,當堆空間較小時,運行一段時間以後,就會出現"碎片",如果並發收集器找不到足夠的空間,那麼並發收集器將會停止,然後使用傳統的標記,清除方式進行回收.如果出現"碎片",可能需要進行如下配置:
-XX:+UseCMSCompactAtFullCollection:使用並發收集器時,開啟對年老代的壓縮.
-XX:CMSFullGCsBeforeCompaction=0:上面配置開啟的情況下,這里設置多少次Full GC後,對年老代進行壓縮
用64位操作系統,Linux下64位的jdk比32位jdk要慢一些,但是吃得內存更多,吞吐量更大
XMX和XMS設置一樣大,MaxPermSize和MinPermSize設置一樣大,這樣可以減輕伸縮堆大小帶來的壓力
使用CMS的好處是用盡量少的新生代,經驗值是128M-256M, 然後老生代利用CMS並行收集, 這樣能保證系統低延遲的吞吐效率。 實際上cms的收集停頓時間非常的短,2G的內存, 大約20-80ms的應用程序停頓時間
系統停頓的時候可能是GC的問題也可能是程序的問題,多用jmap和jstack查看,或者killall -3 java,然後查看java控制台日誌,能看出很多問題。(相關工具的使用方法將在後面的blog中介紹)
仔細了解自己的應用,如果用了緩存,那麼年老代應該大一些,緩存的HashMap不應該無限制長,建議採用LRU演算法的Map做緩存,LRUMap的最大長度也要根據實際情況設定。
採用並發回收時,年輕代小一點,年老代要大,因為年老大用的是並發回收,即使時間長點也不會影響其他程序繼續運行,網站不會停頓
JVM參數的設置(特別是 –Xmx –Xms –Xmn -XX:SurvivorRatio -XX:MaxTenuringThreshold等參數的設置沒有一個固定的公式,需要根據PV old區實際數據 YGC次數等多方面來衡量。為了避免promotion faild可能會導致xmn設置偏小,也意味著YGC的次數會增多,處理並發訪問的能力下降等問題。每個參數的調整都需要經過詳細的性能測試,才能找到特定應用的最佳配置。
promotion failed:
垃圾回收時promotion failed是個很頭痛的問題,一般可能是兩種原因產生,第一個原因是救助空間不夠,救助空間里的對象還不應該被移動到年老代,但年輕代又有很多對象需要放入救助空間;第二個原因是年老代沒有足夠的空間接納來自年輕代的對象;這兩種情況都會轉向Full GC,網站停頓時間較長。
解決方方案一:
第一個原因我的最終解決辦法是去掉救助空間,設置-XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0即可,第二個原因我的解決辦法是設置為某個值(假設70),這樣年老代空間到70%時就開始執行CMS,年老代有足夠的空間接納來自年輕代的對象。
解決方案一的改進方案:
又有改進了,上面方法不太好,因為沒有用到救助空間,所以年老代容易滿,CMS執行會比較頻繁。我改善了一下,還是用救助空間,但是把救助空間加大,這樣也不會有promotion failed。具體操作上,32位Linux和64位Linux好像不一樣,64位系統似乎只要配置MaxTenuringThreshold參數,CMS還是有暫停。為了解決暫停問題和promotion failed問題,最後我設置-XX:SurvivorRatio=1 ,並把MaxTenuringThreshold去掉,這樣即沒有暫停又不會有promotoin failed,而且更重要的是,年老代和永久代上升非常慢(因為好多對象到不了年老代就被回收了),所以CMS執行頻率非常低,好幾個小時才執行一次,這樣,伺服器都不用重啟了。
-Xmx4000M -Xms4000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log

值與Xmn的關系公式
上面介紹了promontion faild產生的原因是EDEN空間不足的情況下將EDEN與From survivor中的存活對象存入To survivor區時,To survivor區的空間不足,再次晉升到old gen區,而old gen區內存也不夠的情況下產生了promontion faild從而導致full gc.那可以推斷出:eden+from survivor < old gen區剩餘內存時,不會出現promontion faild的情況,即:
(Xmx-Xmn)*(1-/100)>=(Xmn-Xmn/(SurvivorRatior+2)) 進而推斷出:
<=((Xmx-Xmn)-(Xmn-Xmn/(SurvivorRatior+2)))/(Xmx-Xmn)*100
例如:
當xmx=128 xmn=36 SurvivorRatior=1時 <=((128.0-36)-(36-36/(1+2)))/(128-36)*100 =73.913
當xmx=128 xmn=24 SurvivorRatior=1時 <=((128.0-24)-(24-24/(1+2)))/(128-24)*100=84.615…
當xmx=3000 xmn=600 SurvivorRatior=1時 <=((3000.0-600)-(600-600/(1+2)))/(3000-600)*100=83.33
低於70% 需要調整xmn或SurvivorRatior值。

7、java代碼怎麼設定啟動時的JVM參數

不管是YGC還是 GC,GC過程中都會對導致程序運行中中斷,正確的選擇不同的GC策略,調整JVM、GC的參數,可以極大的減少由於GC工作,而導致的程序運行中斷方面的問題,進而適當的提高Java程序的工作效率。但是調整GC是以個極為復雜的過程,由於各個程序具備不同的特點,如:web和GUI程序就有很大區別(Web可以適當的停頓,但GUI停頓是客戶無法接受的),而且由於跑在各個機器上的配置不同(主要cup個數,內存不同),所以使用的GC種類也會不同(如何選擇見GC種類及如何選擇)。本文將注重介紹JVM、GC的一些重要參數的設置來提高系統的性能。
GC性能方面的考慮
對於GC的性能主要有2個方面的指標:吞吐量throughput(工作時間不算gc的時間占總的時間比)和暫停pause(gc發生時app對外顯示的無法響應)。
1. Total Heap
默認情況下,vm會增加/減少heap大小以維持free space在整個vm中占的比例,這個比例由MinHeapFreeRatio和MaxHeapFreeRatio指定。
一般而言,server端的app會有以下規則:
對vm分配盡可能多的memory;
將Xms和Xmx設為一樣的值。如果虛擬機啟動時設置使用的內存比較小,這個時候又需要初始化很多對象,虛擬機就必須重復地增加內存。
處理器核數增加,內存也跟著增大。
2. The Young Generation
另外一個對於app流暢性運行影響的因素是young generation的大小。young generation越大,minor collection越少;但是在固定heap size情況下,更大的young generation就意味著小的tenured generation,就意味著更多的major collection(major collection會引發minor collection)。
NewRatio反映的是young和tenured generation的大小比例。NewSize和MaxNewSize反映的是young generation大小的下限和上限,將這兩個值設為一樣就固定了young generation的大小(同Xms和Xmx設為一樣)。
如果希望,SurvivorRatio也可以優化survivor的大小,不過這對於性能的影響不是很大。SurvivorRatio是eden和survior大小比例。
一般而言,server端的app會有以下規則:
首先決定能分配給vm的最大的heap size,然後設定最佳的young generation的大小;
如果heap size固定後,增加young generation的大小意味著減小tenured generation大小。讓tenured generation在任何時候夠大,能夠容納所有live的data(留10%-20%的空餘)。
經驗&&規則
年輕代大小選擇
響應時間優先的應用:盡可能設大,直到接近系統的最低響應時間限制(根據實際情況選擇).在此種情況下,年輕代收集發生的頻率也是最小的.同時,減少到達年老代的對象.
吞吐量優先的應用:盡可能的設置大,可能到達Gbit的程度.因為對響應時間沒有要求,垃圾收集可以並行進行,一般適合8CPU以上的應用.
避免設置過小.當新生代設置過小時會導致:1.YGC次數更加頻繁 2.可能導致YGC對象直接進入舊生代,如果此時舊生代滿了,會觸發FGC.
年老代大小選擇
響應時間優先的應用:年老代使用並發收集器,所以其大小需要小心設置,一般要考慮並發會話率和會話持續時間等一些參數.如果堆設置小了,可以會造成內存碎 片,高回收頻率以及應用暫停而使用傳統的標記清除方式;如果堆大了,則需要較長的收集時間.最優化的方案,一般需要參考以下數據獲得:
並發垃圾收集信息、持久代並發收集次數、傳統GC信息、花在年輕代和年老代回收上的時間比例。
吞吐量優先的應用:一般吞吐量優先的應用都有一個很大的年輕代和一個較小的年老代.原因是,這樣可以盡可能回收掉大部分短期對象,減少中期的對象,而年老代盡存放長期存活對象.
較小堆引起的碎片問題
因為年老代的並發收集器使用標記,清除演算法,所以不會對堆進行壓縮.當收集器回收時,他會把相鄰的空間進行合並,這樣可以分配給較大的對象.但是,當堆空間較小時,運行一段時間以後,就會出現"碎片",如果並發收集器找不到足夠的空間,那麼並發收集器將會停止,然後使用傳統的標記,清除方式進行回收.如果出現"碎片",可能需要進行如下配置:
-XX:+UseCMSCompactAtFullCollection:使用並發收集器時,開啟對年老代的壓縮.
-XX:CMSFullGCsBeforeCompaction=0:上面配置開啟的情況下,這里設置多少次Full GC後,對年老代進行壓縮
用64位操作系統,Linux下64位的jdk比32位jdk要慢一些,但是吃得內存更多,吞吐量更大
XMX和XMS設置一樣大,MaxPermSize和MinPermSize設置一樣大,這樣可以減輕伸縮堆大小帶來的壓力
使用CMS的好處是用盡量少的新生代,經驗值是128M-256M, 然後老生代利用CMS並行收集, 這樣能保證系統低延遲的吞吐效率。 實際上cms的收集停頓時間非常的短,2G的內存, 大約20-80ms的應用程序停頓時間
系統停頓的時候可能是GC的問題也可能是程序的問題,多用jmap和jstack查看,或者killall -3 java,然後查看java控制台日誌,能看出很多問題。(相關工具的使用方法將在後面的blog中介紹)
仔細了解自己的應用,如果用了緩存,那麼年老代應該大一些,緩存的HashMap不應該無限制長,建議採用LRU演算法的Map做緩存,LRUMap的最大長度也要根據實際情況設定。
採用並發回收時,年輕代小一點,年老代要大,因為年老大用的是並發回收,即使時間長點也不會影響其他程序繼續運行,網站不會停頓
JVM參數的設置(特別是 –Xmx –Xms –Xmn -XX:SurvivorRatio -XX:MaxTenuringThreshold等參數的設置沒有一個固定的公式,需要根據PV old區實際數據 YGC次數等多方面來衡量。為了避免promotion faild可能會導致xmn設置偏小,也意味著YGC的次數會增多,處理並發訪問的能力下降等問題。每個參數的調整都需要經過詳細的性能測試,才能找到特定應用的最佳配置。
promotion failed:
垃圾回收時promotion failed是個很頭痛的問題,一般可能是兩種原因產生,第一個原因是救助空間不夠,救助空間里的對象還不應該被移動到年老代,但年輕代又有很多對象需要放入救助空間;第二個原因是年老代沒有足夠的空間接納來自年輕代的對象;這兩種情況都會轉向Full GC,網站停頓時間較長。
解決方方案一:
第一個原因我的最終解決辦法是去掉救助空間,設置-XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0即可,第二個原因我的解決辦法是設置為某個值(假設70),這樣年老代空間到70%時就開始執行CMS,年老代有足夠的空間接納來自年輕代的對象。
解決方案一的改進方案:
又有改進了,上面方法不太好,因為沒有用到救助空間,所以年老代容易滿,CMS執行會比較頻繁。我改善了一下,還是用救助空間,但是把救助空間加大,這樣也不會有promotion failed。具體操作上,32位Linux和64位Linux好像不一樣,64位系統似乎只要配置MaxTenuringThreshold參數,CMS還是有暫停。為了解決暫停問題和promotion failed問題,最後我設置-XX:SurvivorRatio=1 ,並把MaxTenuringThreshold去掉,這樣即沒有暫停又不會有promotoin failed,而且更重要的是,年老代和永久代上升非常慢(因為好多對象到不了年老代就被回收了),所以CMS執行頻率非常低,好幾個小時才執行一次,這樣,伺服器都不用重啟了。
-Xmx4000M -Xms4000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log

值與Xmn的關系公式
上面介紹了promontion faild產生的原因是EDEN空間不足的情況下將EDEN與From survivor中的存活對象存入To survivor區時,To survivor區的空間不足,再次晉升到old gen區,而old gen區內存也不夠的情況下產生了promontion faild從而導致full gc.那可以推斷出:eden+from survivor < old gen區剩餘內存時,不會出現promontion faild的情況,即:
(Xmx-Xmn)*(1-/100)>=(Xmn-Xmn/(SurvivorRatior+2)) 進而推斷出:
<=((Xmx-Xmn)-(Xmn-Xmn/(SurvivorRatior+2)))/(Xmx-Xmn)*100
例如:
當xmx=128 xmn=36 SurvivorRatior=1時 <=((128.0-36)-(36-36/(1+2)))/(128-36)*100 =73.913
當xmx=128 xmn=24 SurvivorRatior=1時 <=((128.0-24)-(24-24/(1+2)))/(128-24)*100=84.615…
當xmx=3000 xmn=600 SurvivorRatior=1時 <=((3000.0-600)-(600-600/(1+2)))/(3000-600)*100=83.33
低於70% 需要調整xmn或SurvivorRatior值。

8、如何查看GC 及jvm配置

java雖然是自動回收內存,但是應用程序,尤其伺服器程序最好根據業務情況指明內存分配限制。否則可能導致應用程序宕掉。

舉例說明含義:
-Xms128m
表示JVM Heap(堆內存)最小尺寸128MB,初始分配
-Xmx512m
表示JVM Heap(堆內存)最大允許的尺寸256MB,按需分配。

說明:如果-Xmx不指定或者指定偏小,應用可能會導致java.lang.OutOfMemory錯誤,此錯誤來自JVM不是Throwable的,無法用try...catch捕捉。

PermSize和MaxPermSize指明虛擬機為java永久生成對象(Permanate generation)如,class對象、方法對象這些可反射(reflective)對象分配內存限制,這些內存不包括在Heap(堆內存)區之中。

-XX:PermSize=64MB 最小尺寸,初始分配
-XX:MaxPermSize=256MB 最大允許分配尺寸,按需分配
過小會導致:java.lang.OutOfMemoryError: PermGen space

MaxPermSize預設值和-server -client選項相關。
-server選項下默認MaxPermSize為64m
-client選項下默認MaxPermSize為32m

經驗:
1、慎用最小限制選項Xms,PermSize已節約系統資源。

=========================================================

近期研究對jvm的內存使用情況進行監控,因此對觀察虛擬機的內存使用方法做了一些收集,對jvm的參數設置了解了一下:

幾個基本概念:

PermGen space:全稱是Permanent Generation space,即永久代。就是說是永久保存的區域,用於存放Class和Meta信息,Class在被Load的時候被放入該區域,GC(Garbage Collection)應該不會對PermGen space進行清理,所以如果你的APP會LOAD很多CLASS的話,就很可能出現PermGen space錯誤。
Heap space:存放Instance。Java Heap分為3個區,Young即新生代,Old即老生代和Permanent。Young保存剛實例化的對象。當該區被填滿時,GC會將對象移到Old區。Permanent區則負責保存反射對象。

幾個參數設置的意義:

xms/xmx:定義YOUNG+OLD段的總尺寸,ms為JVM啟動時YOUNG+OLD的內存大小;mx為最大可佔用的YOUNG+OLD內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
NewSize/MaxNewSize:定義YOUNG段的尺寸,NewSize為JVM啟動時YOUNG的內存大小;MaxNewSize為最大可佔用的YOUNG內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
PermSize/MaxPermSize:定義Perm段的尺寸,PermSize為JVM啟動時Perm的內存大小;MaxPermSize為最大可佔用的Perm內存大小。在用戶生產環境上一般將這兩個值設為相同,以減少運行期間系統在內存申請上所花的開銷。
SurvivorRatio:設置YOUNG代中Survivor空間和Eden空間的比例

申請一塊內存的過程:

A. JVM會試圖為相關Java對象在Eden中初始化一塊內存區域
B. 當Eden空間足夠時,內存申請結束。否則到下一步
C. JVM試圖釋放在Eden中所有不活躍的對象(這屬於1或更高級的垃圾回收);釋放後若Eden空間仍然不足以放入新對象,則試圖將部分Eden中活躍對象放入Survivor區/OLD區
D. Survivor區被用來作為Eden及OLD的中間交換區域,當OLD區空間足夠時,Survivor區的對象會被移到Old區,否則會被保留在Survivor區
E. 當OLD區空間不夠時,JVM會在OLD區進行完全的垃圾收集(0級)
F. 完全垃圾收集後,若Survivor及OLD區仍然無法存放從Eden復制過來的部分對象,導致JVM無法在Eden區為新對象創建內存區域,則出現」out of memory錯誤」

我們的一種resin伺服器的jvm參數設置:

「-Xmx2000M -Xms2000M -Xmn500M -XX:PermSize=250M -XX:MaxPermSize=250M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:=60 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log」

是一種典型的響應時間優先型的配置。

Java中有四種不同的回收演算法,對應的啟動參數為
–XX:+UseSerialGC
–XX:+UseParallelGC
–XX:+UseParallelOldGC
–XX:+UseConcMarkSweepGC

1. Serial Collector
大部分平台或者強制 java -client 默認會使用這種。
young generation演算法 = serial
old generation演算法 = serial (mark-sweep-compact)
這種方法的缺點很明顯,stop-the-world, 速度慢。伺服器應用不推薦使用。

2. Parallel Collector
在linux x64上默認是這種,其他平台要加 java -server 參數才會默認選用這種。
young = parallel,多個thread同時copy
old = mark-sweep-compact = 1
優點:新生代回收更快。因為系統大部分時間做的gc都是新生代的,這樣提高了throughput(cpu用於非gc時間)
缺點:當運行在8G/16G server上old generation live object太多時候pause time過長

3. Parallel Compact Collector (ParallelOld)
young = parallel = 2
old = parallel,分成多個獨立的單元,如果單元中live object少則回收,多則跳過
優點:old old generation上性能較 parallel 方式有提高
缺點:大部分server系統old generation內存佔用會達到60%-80%, 沒有那麼多理想的單元live object很少方便迅速回收,同時compact方面開銷比起parallel並沒明顯減少。

4. Concurent Mark-Sweep(CMS) Collector
young generation = parallel collector = 2
old = cms
同時不做 compact 操作。
優點:pause time會降低, pause敏感但CPU有空閑的場景需要建議使用策略4.
缺點:cpu佔用過多,cpu密集型伺服器不適合。另外碎片太多,每個object的存儲都要通過鏈表連續跳n個地方,空間浪費問題也會增大。

內存監控的方法:

1. jmap -heap pid
查看java 堆(heap)使用情況

using thread-local object allocation.
Parallel GC with 4 thread(s) //GC 方式

Heap Configuration: //堆內存初始化配置
MinHeapFreeRatio=40 //對應jvm啟動參數-XX:MinHeapFreeRatio設置JVM堆最小空閑比率(default 40)
MaxHeapFreeRatio=70 //對應jvm啟動參數 -XX:MaxHeapFreeRatio設置JVM堆最大空閑比率(default 70)
MaxHeapSize=512.0MB //對應jvm啟動參數-XX:MaxHeapSize=設置JVM堆的最大大小
NewSize = 1.0MB //對應jvm啟動參數-XX:NewSize=設置JVM堆的『新生代』的默認大小
MaxNewSize =4095MB //對應jvm啟動參數-XX:MaxNewSize=設置JVM堆的『新生代』的最大大小
OldSize = 4.0MB //對應jvm啟動參數-XX:OldSize=<value>:設置JVM堆的『老生代』的大小
NewRatio = 8 //對應jvm啟動參數-XX:NewRatio=:『新生代』和『老生代』的大小比率
SurvivorRatio = 8 //對應jvm啟動參數-XX:SurvivorRatio=設置年輕代中Eden區與Survivor區的大小比值
PermSize= 16.0MB //對應jvm啟動參數-XX:PermSize=<value>:設置JVM堆的『永生代』的初始大小
MaxPermSize=64.0MB //對應jvm啟動參數-XX:MaxPermSize=<value>:設置JVM堆的『永生代』的最大大小

Heap Usage: //堆內存分步
PS Young Generation
Eden Space: //Eden區內存分布
capacity = 20381696 (19.4375MB) //Eden區總容量
used = 20370032 (19.426376342773438MB) //Eden區已使用
free = 11664 (0.0111236572265625MB) //Eden區剩餘容量
99.94277218147106% used //Eden區使用比率
From Space: //其中一個Survivor區的內存分布
capacity = 8519680 (8.125MB)
used = 32768 (0.03125MB)
free = 8486912 (8.09375MB)
0.38461538461538464% used
To Space: //另一個Survivor區的內存分布
capacity = 9306112 (8.875MB)
used = 0 (0.0MB)
free = 9306112 (8.875MB)
0.0% used
PS Old Generation //當前的Old區內存分布
capacity = 366280704 (349.3125MB)
used = 322179848 (307.25464630126953MB)
free = 44100856 (42.05785369873047MB)
87.95982001825573% used
PS Perm Generation //當前的 「永生代」 內存分布
capacity = 32243712 (30.75MB)
used = 28918584 (27.57891082763672MB)
free = 3325128 (3.1710891723632812MB)
89.68751488662348% used

=====================================================================

jps
-q只輸出進程ID,而不輸出類的短名稱
-m用於輸出傳遞給Java進程(主函數)的參數
-l完整路徑
-v顯示傳遞給jvm的參數

9、JDK1.8版本對於CMS演算法有哪些改進

JDK7.0和JDK6.0有什麼區別?

jdk7是模塊化程序,模塊間的依賴性變小了.jdk的好多功能間有相互依賴性,導致一個配置不對,好多不能用.舉例來說:假設你正使用Logging API(java.util.logging)),Logging需要NIO和JMX,JMX需要JavaBeans, JNDI, RMI和CORBA,JNDI需要java.applet.Applet而且JavaBeans依賴AWT.

JDK7 新特性:

JSR203:JDK中會更多的IO API(「NIO.2」)訪問文件系統與之前的JDK中通過java.io.File訪問文件的方式不同,JDK7將通過java.nio.file包中的類完成。JDK7會使用java.nio.file.Path類來操作任何文件系統中的文件。(這里說的任何文件系統指的是可以使用任何文件存儲方式的文件系統)

示例:

Java7之前

File file = new File(「some_file」);

使用Java7

Path path = Paths.get(「some_file」);

在File類中加入了新的方法toPath(),可以方便的轉換File到Path

Path path = new File(「some_file」).toPath();
Socket通道綁定和配置在JDK7中面向通道的網路編程也得以更新!JDK7中可以直接綁定通道的socket和直接操作socket屬性。JDK7提供了平台socket屬性和指定實現的socket屬性。
JDK7加入了一個新的位元組通道類,SeekableByteChannel
NetworkChannel是面向網路通道編程模塊中的又一個新的超介面。利用它可以方便的綁定通道socket,並且方便設置和獲取socket的屬性。
MulticastChannel介面方便創建IP協議多播。多播實現直接綁定到本地的多播設備。
靈活的非同步I/O可以通過真正的非同步I/O,在不同的線程中運行數以萬計的流操作!JKD7提供了對文件和socket的非同步操作。一些JDK7中的新通道:
AsynchronousFileChannel:非同步文件通道可以完成對文件的非同步讀寫操作。
AsynchronouseSocketChannel:Socket中的一個簡單非同步通道,方法是非同步的並且支持超時。
:非同步的ServerSocket
AsynchronousDatagramChannel:基於數據包的非同步socket
JSR292:Java平台中的動態編程語言Da Vinci Machine項目(JSR292)的主旨是擴展JVM支持除Java以外的其它編程語言,尤其是對動態編程語言的支持。所支持的語言必須和Java一樣不收到歧視並共同存在。JSR334:Java語言的一些改進OpenJDK項目的創造(JSR334)的主旨是對Java語言進行一些小的改進來提高每天的Java開發人員的工作。這些改進包括:
Switch語句允許使用String類型
支持二進制常量和數字常量中可以使用下劃線
使用一個catch語言來處理多種異常類型
對通用類型實例的創建提供類型推理
Try-with-resources語句來自動關閉資源
JSR119:Java編譯器APIJSR199是在JDK6中加入的,主要用來提供調用Java編譯器的API。除了提供javac的命令行工具,JSR199提供Java編譯器到程序交互的能力。Java編譯器API要達到三個目標:
對編譯器和其它工具的調用
對結構化的編譯信息進行訪問
對文件輸入輸出定製化處理的能力
JSR206:Java XML處理的API (JAXP)JSR206即Java API for XML Processing(JAXP),是Java處理XML文檔的一個與實現無關,靈活的API。

JAXP1.3的主要特性包括:
DOM3
內建通過XML Schema進行文檔校驗的處理器
對XML Schema中的數據類型的實現,在javax.xml.datatype包中。
XSLTC,最快的轉換器,也是XSLT處理中的默認引擎。
提供對XInclude的實現。這將會方便我們使用文本和其它已有的XML來創建新的文檔,這樣可以對文檔片段進行重用。
JDK7中會包含JAXP1.3,這個是JAXP的最新實現。
綁定技術(JAXB)JSR222即Java Architecture for XML Binding(JAXB)。JAXB的目的是便於Java程序進行Java類到XML文檔的映射。

JAXB2的主要特性:
支持全部的W3C XML Schema特性。(JAXB1.0說明了對於W3C XML Schema中某些特性的不支持)
支持綁定Java到XML文檔,通過添加javax.xml.bind.annotation包來控制綁定。
大量減少了對於schema衍生出來的類。
通過JAXP1.3的校驗API來提供額外的校驗能力。
JDK7中將包括JAXB2.2
JSR224:基於XML的Web服務API(JAX-WS)JSR224即Java API for XML-based Web Services(JAX-WS),是一個基於Annotation標注的編程模型,主要針對Web Service應用和客戶端開發。

JAX-WS2的主要特性包括:
對JAXB2.1 API的支持(JSR222)
對Web Services Addressing 1.0的支持
EndpointReference(EPR)的API:創建(BindingProvider.getEndpointReference(),Endpoint.getEndpointReference(),MessageContext.getEndpointReference())

事務處理(使用JAXB2.1綁定W3C EPR到W3CEndpointReference類,使用JAXB Marshall/Unmarshall W3CendpointReference類)
提供友好的API來啟用和停止某些特性,例如MTOM特性和Addressing特性
JDK7將包含JAX-WS2.2
可插拔的Annotation處理APIJSR269即Pluggable Annotation-Processing API
從JDK5開始,Annotation標注就成了強大的機制用來標注我們的類、屬性和方法。通常Annotation標注是在創建階段或者運行階段進行處理的,並獲取語義結果。JSR269主要用來定義一套API,允許通過可插拔的API來進行標注處理器的創建。
規范包括一部分的API用來對Java編程語言進行構建,還有就對標注處理器聲明和控制運行的部分。
有了程序中的Annotation標注,就需要有標注處理器框架來反射程序的結構。
Annotation處理器會指定他們處理的標注並且更多的處理器可以合作運行。
標注處理器和程序結構的API可以在構建階段訪問。
小的改進java.util.Objects提供了一套9個靜態方法。其中兩個方法用來檢測當前對象是null還是非null。兩個方法用來提供生成toString()字元串同時支持null對象。兩個用來處理hash的方法。兩個方法用來處理equals。最後一個compare方法用來進行比較。Swing JLayer組件JXLayer是一個組件裝飾器,提供了用來裝飾多個組合組件的方式,並且可以捕獲所有滑鼠、鍵盤和FocusEvent的事件,並針對所有的XLayer子組件。這個組件只會對public swing的api起作用,對全局設置沒有作用,例如對EventQueue或者RepaintManager。(除了這些,Swing還將在JDK7中提供JXDatePicker和CSS方式樣式)並發和集合APIJSR166,並發和集合API提供了靈活的非同步處理,並發HashMap,傳輸隊列和輕量級的fork/join框架以及本地線程方式的偽隨機數生成器。類載入器體系結構類載入器已經升級到了可以在無等級類載入器拓撲中避免死鎖。JDK7中包含了一個對於多線程自定義類載入器的增強實現,名字為具有並行能力的類載入器。使用平行能力的類載入器載入class,會同步到類載入器和類名。Locale類的改進Java Locale避免由於小的變化導致數據丟失。除此,Locale應該提供更多的特性,例如IETF BCP 47和UTR 35(CLDR/LDML)。分離用戶Locale和用戶介面LocaleJDK7分離了UI語言的locale和格式化locale,這個已經在Vista之後的windows系統中實現了。嚴格的類文件檢測通過JavaSE6的規范,version51(SE7)的類文件和之後的版本必須通過類型檢測來檢驗。對於老的推理驗證VM不可以宕掉Elliptic-Curve

Cryptography (ECC)橢圓曲線加密
從JDK7開始,Java提供對標準的ECC演算法的靈活實現(基於橢圓曲線的公鑰加密演算法)Swing中的Nimbus外觀Nimbus是JDS(Java Desktop System)中的新外觀。這個也是Solaris11的GTK主題Java2D中的XRender PipelineJDK7中加入了基於X11 XRender擴展的Java2D圖形管道。這將提供更多的對於當前先進的GPUs訪問的功能。TLS1.2TLS (Transport Layer Security)是一個用在Internet上的數據傳輸安全協議,用來避免監聽、引誘和消息偽造。TLS的主要目的是提供兩個應用間通信的隱私和數據完整。TLS是RFC5246標准,在JDK7中提供1.2JDBC4.0/4.1JDBC4.1特性只在JDK7或者更高版本中存在。JDBC4.1隻是對JDBC4.0進行較小的改動。關於一些JDBC4.0/4.1的特性:
數據源—Derby包括了對於javax.sql.DataSource的新的實現
JDBC驅動自動載入—應用不必在通過Class.forName()方法來載入資料庫驅動了。取而代之的是DriverManager會根據應用請求連接的情況,自動查找到合適的JDBC驅動。
包裝—這是JDBC4.0中的新的概念,主要是通過這種機制可以讓應用獲取的廠商提供的標准JDBC對象實現,例如Connections,Statements和ResultSets。
Statement事件—連接池可以監聽Statement的關閉和錯誤時間。addStatementEventListener和removeStatementEventListener被加入到了javax.sql.PooledConnection
JDK7提供了JDBC4.1全部的支持
透明窗體和異形窗體為了6u10版本的圖形處理,JDK提供了透明效果的支持(簡單透明和像素透明)並且提供了對於異形窗體的支持(可以將窗體設置成任意形狀),輕重混合並且增強了AWT安全警告。透明效果和異形窗體是通過com.sun.awt.AWTUtilities類實現的。Unicode6.0Unicode6.0提供了諸如2.088字元集、對已經存在字元集的屬性改進、格式化改進以及新的屬性和數據文件。

JDK7已經更新到對Unicode6.0的支持。
要來關閉URLClassLoader的方法

對JMX代理和MBeans的改進
通過URLClassLoader,應用可以通過URL搜索路徑來載入類和資源。JKD7提供了close()新方法來幫助URLClassLoader清理資源。

這個改進來至於JRockit,可以方便連接平台。MBean伺服器可以通過防火牆提供一套MBeans,這些暴露了VM中的一些內部操作的信息
新的垃圾回收器JDK7提供了新的垃圾回收器,針對目前的CMS垃圾回收器,這將會讓垃圾回收器有更少的停頓時間和更高的語言效果。改進的JSRJSR901:Java Language Specification(JLS)Java語言計劃
JSR901包括了從第一版Java規范到現在為止的所有的變化、說明和補充。Java語言通過JLS規范。
對於JLS的改變通過JSR901進行管理
JDK7將會包括最新的JSR901
JSR924:JVM平台規范
JSR924目的是維護Java虛擬機規范的變化,其中第二版是為了J2SE1.5的。
Java SE API
JavaSE APIs保持著對例行維護和小范圍改進的加入計劃的記錄
延期到JDK8或者之後的規范
JSR294:Java語言和虛擬機對模塊編程技術的支持—當前JSR主要的目的是提供在編譯期和運行期的模塊編程支持
JSR308:對於Java類型的Annotation注釋—這將是對於當前注釋符號系統的擴展,將允許我們在類型中出現注釋符號。
JSR296:Swing應用框架—主旨是消除Swing編程中的模板代碼並且提供Swing程序更加簡單的結構。
模塊化—提供一個明確的、簡單的、低級別的模塊系統,主要目的是將JDK模塊化。
JSR TBD:Lambda項目—Lambda表達式(通俗的也稱為「閉包「)和對Java編程語言的保護方法
JSR TBD:對於集合支持的語言—常量表達式對於lists、sets和maps的迭代以及通過索引符號對lists和maps的訪問。
Swing JDatePicker組件—添加SwingLabs JXDatePicker組件到平台。

與jvmcms設置相關的知識