1、新手求助 Intel WebRTC SDK的服务器搭建问题
修改服务器管理员与来宾账户名,禁用来宾账户。
管理员账户使用复杂密码
开启防火墙,专用到哪些端口,就属开哪些。
打开漏洞更新,最好先更新好漏洞,再设置外网到服务器的通讯
在“本地安全设置”中加强设置,如:“用户权限”、“安全选项”等
有必要可以设置“本地安全设置”的“ip安全设置”
根据必要安装功能与软件,服务器安装的东西遵循越少越好
修改远程端口
优化系统,如关闭不用的共享
关闭不适用的服务,如:DHCP
启用SYN攻击保护(网上可找到具体操作)
清理系统垃圾
暂时只想到这么多,有些要根据具体情况具体分析。
2、webrtc 需要后台服务器吗
sipdroid 1)架构 sip协议栈使用JAVA实现,音频Codec使用skype的silk(Silk编解码是Skype向第三方开发人员和硬件制造商提供免版版税权认证(RF)的Silk宽带音频编码器)实现。NAT传输支持stun server. 2)优缺点: NAT方面只支持STUN,无ICE框架
3、webrtc服务器需要多少带宽
webrtc中的带宽自适应算法分为两种:
1, 发端带宽控制, 原理是由rtcp中的丢包统计来动态的增加或减少带宽,在减少带宽时使用TFRC算法来增加平滑度。
2, 收端带宽估算, 原理是并由收到rtp数据,估出带宽; 用卡尔曼滤波,对每一帧的发送时间和接收时间进行分析, 从而得出网络带宽利用情况,修正估出的带宽。
两种算法相辅相成, 收端将估算的带宽发送给发端, 发端结合收到的带宽以及丢包率,调整发送的带宽。
下面具体分析两种算法:
2, 接收端带宽估算算法分析
结合文档http://tools.ietf.org/html/draft-alvestrand-rtcweb-congestion-02以及源码webrtc/moles/remote_bitrate_estimator/overuse_detector.cc进行分析
带宽估算模型: d(i) = dL(i) / c + w(i) d(i)两帧数据的网络传输时间差,dL(i)两帧数据的大小差, c为网络传输能力, w(i)是我们关注的重点, 它主要由三个因素决定:发送速率, 网络路由能力, 以及网络传输能力。w(i)符合高斯分布, 有如下结论:当w(i)增加是,占用过多带宽(over-using);当w(i)减少时,占用较少带宽(under-using);为0时,用到恰好的带宽。所以,只要我们能计算出w(i),即能判断目前的网络使用情况,从而增加或减少发送的速率。
算法原理:即应用kalman-filters
theta_hat(i) = [1/C_hat(i) m_hat(i)]^T // i时间点的状态由C, m共同表示,theta_hat(i)即此时的估算值
z(i) = d(i) - h_bar(i)^T * theta_hat(i-1) //d(i)为测试值,可以很容易计算出, 后面的可以认为是d(i-1)的估算值, 因此z(i)就是d(i)的偏差,即resial
theta_hat(i) = theta_hat(i-1) + z(i) * k_bar(i) //好了,这个就是我们要的结果,关键是k值的选取,下面两个公式即是取k值的,具体推导见后继博文。
E(i-1) * h_bar(i)
k_bar(i) = --------------------------------------------
var_v_hat + h_bar(i)^T * E(i-1) * h_bar(i)
E(i) = (I - K_bar(i) * h_bar(i)^T) * E(i-1) + Q(i) // h_bar(i)由帧的数据包大小算出
由此可见,我们只需要知道当前帧的长度,发送时间,接收时间以及前一帧的状态,就可以计算出网络使用情况。
接下来具体看一下代码:
[cpp] view
plaincopy
void OveruseDetector::UpdateKalman(int64_t t_delta,
double ts_delta,
uint32_t frame_size,
uint32_t prev_frame_size) {
const double min_frame_period = UpdateMinFramePeriod(ts_delta);
const double drift = CurrentDrift();
// Compensate for drift
const double t_ts_delta = t_delta - ts_delta / drift; //即d(i)
double fs_delta = static_cast<double>(frame_size) - prev_frame_size;
// Update the Kalman filter
const double scale_factor = min_frame_period / (1000.0 / 30.0);
E_[0][0] += process_noise_[0] * scale_factor;
E_[1][1] += process_noise_[1] * scale_factor;
if ((hypothesis_ == kBwOverusing && offset_ < prev_offset_) ||
(hypothesis_ == kBwUnderusing && offset_ > prev_offset_)) {
E_[1][1] += 10 * process_noise_[1] * scale_factor;
}
const double h[2] = {fs_delta, 1.0}; //即h_bar
const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1],
E_[1][0]*h[0] + E_[1][1]*h[1]};
const double resial = t_ts_delta - slope_*h[0] - offset_; //即z(i), slope为1/C
const bool stable_state =
(BWE_MIN(num_of_deltas_, 60) * fabsf(offset_) < threshold_);
// We try to filter out very late frames. For instance periodic key
// frames doesn't fit the Gaussian model well.
if (fabsf(resial) < 3 * sqrt(var_noise_)) {
UpdateNoiseEstimate(resial, min_frame_period, stable_state);
} else {
UpdateNoiseEstimate(3 * sqrt(var_noise_), min_frame_period, stable_state);
}
const double denom = var_noise_ + h[0]*Eh[0] + h[1]*Eh[1];
const double K[2] = {Eh[0] / denom,
Eh[1] / denom}; //即k_bar
const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
{-K[1]*h[0], 1.0 - K[1]*h[1]}};
const double e00 = E_[0][0];
const double e01 = E_[0][1];
// Update state
E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1];
E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1];
E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1];
E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1];
// Covariance matrix, must be positive semi-definite
assert(E_[0][0] + E_[1][1] >= 0 &&
E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 &&
E_[0][0] >= 0);
slope_ = slope_ + K[0] * resial; //1/C
prev_offset_ = offset_;
offset_ = offset_ + K[1] * resial; //theta_hat(i)
Detect(ts_delta);
}
[cpp] view
plaincopy
BandwidthUsage OveruseDetector::Detect(double ts_delta) {
if (num_of_deltas_ < 2) {
return kBwNormal;
}
const double T = BWE_MIN(num_of_deltas_, 60) * offset_; //即gamma_1
if (fabsf(T) > threshold_) {
if (offset_ > 0) {
if (time_over_using_ == -1) {
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
time_over_using_ = ts_delta / 2;
} else {
// Increment timer
time_over_using_ += ts_delta;
}
over_use_counter_++;
if (time_over_using_ > kOverUsingTimeThreshold //kOverUsingTimeThreshold是gamma_2, gamama_3=1
&& over_use_counter_ > 1) {
if (offset_ >= prev_offset_) {
time_over_using_ = 0;
over_use_counter_ = 0;
hypothesis_ = kBwOverusing;
}
}
} else {
time_over_using_ = -1;
over_use_counter_ = 0;
hypothesis_ = kBwUnderusing;
}
} else {
time_over_using_ = -1;
over_use_counter_ = 0;
hypothesis_ = kBwNormal;
}
return hypothesis_;
}
4、基于android的webrtc服务器怎么搭
android客户端和抄服务器端是基于袭IntentService的,具体如下:后台使用简单的servlet,支持GET或POST。这个servlet最终返回给前台一个字符串flag,值是true或false,表示登录是否成功。然后在安卓的ADT上创建一个安卓项目,建立两个Activity,分别作为登录界面和登录成功界面。HTTP的访问公共类,用于处理GET和POST请求。IntentService服务,用于在后台以队列方式处理耗时操作。在AndroidManifest.xml中注册IntentService。注意uses-permission节点,为程序开启访问网络的权限。登陆界面处理,注意按钮监听事件中,使用Intent将要传递的值传给service。接收广播类中,同样使用Intent将要传递的值传给下一个Activity。在onCreate()中,动态注册接收广播类的实例receiver。在接收广播类中,不要使用完毕后忘记注销接收器,否则会报一个()?的异常。
5、webrtc怎么获取到视屏流发送到服务器
webrtc是协议, 你说的应该是如何推流吧
6、webrtc android 信令服务器怎么写
1.make 模块名称需要查看Android.mk文件的LOCAL_PACKAGE_NAME变量。2.mmm命令用于在源码根目录编译指定模块,参数为模块的相对路径。只能在第一次编译后使用。比如要编译Phone部分源码,需要在终端中执行以下命令:$mmm packages/apps/phone 3.mm命令用于在模块根目录编译这个模块。只能在第一次编译后使用。例如要编译Phone部分源码,需要在终端中执行以下命令:$cd packages/apps/phone $mm 注:mmm和mm命令必须在执行“.build/envsetup.sh”之后才能使用,并且只编译发生变化的文件。如果要编译模块的所有文件,需要-B选项,例如mm -B。
7、WebRTC中的Signaling Server是不是起到了一个ICEServer的作用
我认为不是 两个peer要会话就需要把各自的sdp发送到对方,如果两者都在局域网(nat)之后内,怎么发送?这容时候就需要一个在公网上的能直接访问的中间者来传递消息,在这之前两者都是tcp连接在中间服务器上的。这个中间服务器除了转发sdp,还会传递candidate,它包含stun之后的信息,有了这个peer之间就能直接传media数据了。peer通过ice组件向stun服务器协商后获得了candidate,所以这个信令服务器并不是ICE server,用google 文档上的话说,这个信令服务器可以是普通的socketserver,也可以sip/xmpp/Websocket服务器
8、webrtc stun服务器必须是公网ip吗
一般需要公网IP,如果不是公网IP,那么只能让两个都能连上该服务器的设备进行通信
也就是限制了它应尽的功能,这个stun服务器主要用来穿透防火墙,进行两个网络的通信,如果在同一个内网通信,就没有太大的意义,但也是可以实现的