1、大数据,IDC,云计算之间有什么关系吗?
大数据是云计算的杀手锏应用
大数据与云计算的关系,引起一些人的困惑。为了便于探讨二者的关系,这里从“计算”和“数据”的历史关系说起。因为云计算首先是一种“计算”,大数据首先是一种“数据”,而计算机就是用来“计算”“数据”的。
计算机是软件和硬件分离的,是一种软件定义的电子产品(可编程)。计算机设计中的一个重要问题是如何有效管理CPU、内存和I/O等硬件资源,以及如何让应用程序合理使用这些资源。这两大任务最早内嵌在各种应用程序中,由应用程序自身完成,缺点是费力、复杂和易错,难以升级和移植,而且重复工作。
上世纪60年代这些共性功能开始从应用中分离出来,逐步形成了一种通用的软件包,这就是操作系统。操作系统是位于硬件和应用程序之间的“中间件”,让应用软件和硬件得以分离并独立发展,发展成了最核心的计算机系统软件,也成就了微软公司的伟大。
以UNIX为始祖的常见现代操作系统有Android、BSD、iOS、Linux、 MacOSX、QNX等,以及原创的微软Windows、 Windows Phone和IBM的z/OS.操作系统的工作范围,也从最初的计算机蔓延到手机、游戏控制器、电视机顶盒、智能汽车和智能眼镜等,还有与云计算密切相关的Web服务器。
上世纪70年代,计算机的快速发展使得数字化数据爆发式增长,“海量”数据管理成了新挑战。把通用操作系统的文件管理用于数据管理时,无论是扩展性、效率和便利性,都不适应“海量”数据的管理需要,应用软件被迫内嵌自己设计的数据管理系统。同样的,“海量”数据管理由每个应用程序自身完成,缺点也是费力、复杂和易错,难以升级和移植,并且重复工作。
于是一种专门面向“海量”数据管理的通用软件问世了,那就是数据库管理系统(DBMS),一种应用系统软件。DBMS包括了数据库定义、创建、查询、更新和管理等功能,这些都是数据管理所必需的,是操作系统的文件管理系统所没有的。
著名的DBMS有 MySQL、 PostgreSQL、SQLite、Microsoft SQL Server、Microsoft Access、Oracle、Sybase、dBASE、FoxPro和IBM DB2等,都是关系型DBMS.当然还有非关系型No SQL模式的,只是没那么流行。
DBMS与字处理软件等一起,成为单机时代最重要的应用软件,也成就了一家伟大的应用软件公司Oracle.大约不足20年前,操作系统和数据库的技术和市场未来,看起来都那么可预知。一个是微软的天下,一个是Oracle的天下。
但互联网来了,尤其是Web开始流行。
Web服务器所使用的操作系统,最初面向单机设计,扩展用于局域网范围内管理多台服务器还勉强可用。但当互联网巨头崛起,需要Web服务器的操作系统管理数百万台Web服务器的时候,传统操作系统勉为其难,需要“技术革命”了。“革命”的结果就是云计算。
云计算大伞下有很多概念,核心技术之一是虚拟化。虚拟化有“1虚N”和“N虚1”两种模式,前者主要是为了省钱,以Amazon AWS为代表;后者主要是为了大数据处理,以Google GAE为代表。
云计算的“N虚1”模式,可将多台物理计算机虚拟化为一台超级计算机,向应用程序提供资源池的调度管理服务,与传统操作系统的功能几乎完全相同,因此常被称为“云计算操作系统”。只是云计算操作系统的工作范围,扩大到数据中心甚至整个互联网范围内,把每台计算机也当做资源看待和管理。
有了云计算操作系统,云应用软件和硬件(计算机资源)得以分离,各自可以独立发展。历史再次重演,云计算以及SNS、微博、移动互联网和物联网等的快速发展,具有3V特点的数据爆发,大数据管理的挑战也最先到来。同样,面向计算设计的通用云计算操作系统,在大数据管理方面的扩展性、效率和便利性,都面临新挑战。
历史上计算机面对“海量”数据的挑战,将数据应用和数据管理分离,催生了通用的DBMS.现在云计算面对大数据的挑战,也必将使大数据应用和大数据管理分离,催生“大数据库管理系统”,并且逐步走向通用化和平台化。
ATM(异步传输模式)是通信资源稀缺时代的产物,TCP/IP是通信资源富饶时代的产物。类似的,传统DBMS是IT资源稀缺时代的产物,大数据管理系统是IT资源富饶时代的产物。
计算是工具,可以工业化提供;数据是资源,是个性化的资产。如果说Office、游戏等是PC的杀手锏应用,浏览器、搜索、SNS等是互联网的杀手锏应用,那么大数据等就是云计算的杀手锏应用。
2、云计算和传统idc有什么区别
传统层面的运维人员,接触的都是硬件,如服务器、设备和风火水电,但是在云时代,运维人员已经无法见到物理的任何设备。
云计算运维岗位涉及到云计算平台能否顺利、平稳地运行,因此运维工程师需要掌握的知识结构也相对比较丰富,既涉及到传统的网络运维知识,还涉及到虚拟化、管控、存储、安全等相关知识。另外,运维工程师还需要具备一定的程序设计能力,以便于完成大规模的自动化服务部署,这对于运维工程师也提出了较高的要求。
云计算运维工程师需要考虑两个问题:
应用如何在云平台上实现应用的快速部署,快速更新,实时监控。云计算时代要求运维人员能够自动化地部署应用程序和所有支持的软件和软件包,然后通过生命周期阶段操作维护和管理应用程序,如自动扩展事件和进行软件更新等一系列的操作。
如何在云端更加轻松的部署、配置和管理应用。如何利用工具轻松地在云中快速部署和管理应用程序,同时可以自动处理容量预配置、负载均衡、Auto Scaling和应用程序状况监控,这是对运维人员的新要求。
想要快速蜕变成为云计算运维工程师,参加学习班是一个非常明智的选择。,内容既包括Linux、网络工程师、Python运维、云计算、OpenStack、Doctor容器技术,同时还增加信息安全、安全防御和黑客技术。在教学模式上,采用项目驱动教学模式,由大师级讲师全程面授教学,手把手带领学员做项目。学员可参与Linux云计算网络管理实战、Linux云主机系统管理和服务配置实战、Linux Shell脚本自动化编程实战、开源数据库MySQL DBA运维实战、企业级自动化项目及公有云运维实战、大型网站高并发架构运维实战、网站安全渗透测试及性能调优项目实战、Python Linux自动化运维开发实战以及企业私有云架构及运维实战等。
3、大数据、IDC和云计算之间有什么关系吗?
大数据是云计算的杀手锏应用
大数据与云计算的关系,引起一些人的困惑。为了便于探讨二者的关系,这里从“计算”和“数据”的历史关系说起。因为云计算首先是一种“计算”,大数据首先是一种“数据”,而计算机就是用来“计算”“数据”的。
计算机是软件和硬件分离的,是一种软件定义的电子产品(可编程)。计算机设计中的一个重要问题是如何有效管理CPU、内存和I/O等硬件资源,以及如何让应用程序合理使用这些资源。这两大任务最早内嵌在各种应用程序中,由应用程序自身完成,缺点是费力、复杂和易错,难以升级和移植,而且重复工作。
上世纪60年代这些共性功能开始从应用中分离出来,逐步形成了一种通用的软件包,这就是操作系统。操作系统是位于硬件和应用程序之间的“中间件”,让应用软件和硬件得以分离并独立发展,发展成了最核心的计算机系统软件,也成就了微软公司的伟大。
以UNIX为始祖的常见现代操作系统有Android、BSD、iOS、Linux、 MacOSX、QNX等,以及原创的微软Windows、 Windows Phone和IBM的z/OS.操作系统的工作范围,也从最初的计算机蔓延到手机、游戏控制器、电视机顶盒、智能汽车和智能眼镜等,还有与云计算密切相关的Web服务器。
上世纪70年代,计算机的快速发展使得数字化数据爆发式增长,“海量”数据管理成了新挑战。把通用操作系统的文件管理用于数据管理时,无论是扩展性、效率和便利性,都不适应“海量”数据的管理需要,应用软件被迫内嵌自己设计的数据管理系统。同样的,“海量”数据管理由每个应用程序自身完成,缺点也是费力、复杂和易错,难以升级和移植,并且重复工作。
于是一种专门面向“海量”数据管理的通用软件问世了,那就是数据库管理系统(DBMS),一种应用系统软件。DBMS包括了数据库定义、创建、查询、更新和管理等功能,这些都是数据管理所必需的,是操作系统的文件管理系统所没有的。
著名的DBMS有 MySQL、 PostgreSQL、SQLite、Microsoft SQL Server、Microsoft Access、Oracle、Sybase、dBASE、FoxPro和IBM DB2等,都是关系型DBMS.当然还有非关系型No SQL模式的,只是没那么流行。
DBMS与字处理软件等一起,成为单机时代最重要的应用软件,也成就了一家伟大的应用软件公司Oracle.大约不足20年前,操作系统和数据库的技术和市场未来,看起来都那么可预知。一个是微软的天下,一个是Oracle的天下。
但互联网来了,尤其是Web开始流行。
Web服务器所使用的操作系统,最初面向单机设计,扩展用于局域网范围内管理多台服务器还勉强可用。但当互联网巨头崛起,需要Web服务器的操作系统管理数百万台Web服务器的时候,传统操作系统勉为其难,需要“技术革命”了。“革命”的结果就是云计算。
云计算大伞下有很多概念,核心技术之一是虚拟化。虚拟化有“1虚N”和“N虚1”两种模式,前者主要是为了省钱,以Amazon AWS为代表;后者主要是为了大数据处理,以Google GAE为代表。
云计算的“N虚1”模式,可将多台物理计算机虚拟化为一台超级计算机,向应用程序提供资源池的调度管理服务,与传统操作系统的功能几乎完全相同,因此常被称为“云计算操作系统”。只是云计算操作系统的工作范围,扩大到数据中心甚至整个互联网范围内,把每台计算机也当做资源看待和管理。
有了云计算操作系统,云应用软件和硬件(计算机资源)得以分离,各自可以独立发展。历史再次重演,云计算以及SNS、微博、移动互联网和物联网等的快速发展,具有3V特点的数据爆发,大数据管理的挑战也最先到来。同样,面向计算设计的通用云计算操作系统,在大数据管理方面的扩展性、效率和便利性,都面临新挑战。
历史上计算机面对“海量”数据的挑战,将数据应用和数据管理分离,催生了通用的DBMS.现在云计算面对大数据的挑战,也必将使大数据应用和大数据管理分离,催生“大数据库管理系统”,并且逐步走向通用化和平台化。
ATM(异步传输模式)是通信资源稀缺时代的产物,TCP/IP是通信资源富饶时代的产物。类似的,传统DBMS是IT资源稀缺时代的产物,大数据管理系统是IT资源富饶时代的产物。
计算是工具,可以工业化提供;数据是资源,是个性化的资产。如果说Office、游戏等是PC的杀手锏应用,浏览器、搜索、SNS等是互联网的杀手锏应用,那么大数据等就是云计算的杀手锏应用。
4、云计算和IDC的区别
一、云计算和传统IDC在服务类型上的区别
常用的传统IDC服务包括实体服务器托管和租用两类。前者是由用户自行购买硬件发往机房托管,期间设备的监控和管理工作均由用户单方独立完成,IDC数据中心提供IP接入、带宽接入、电力供应和网络维护等,后者是由IDC数据中心租用实体设备给客户使用,同时负责环境的稳定,用户无需购买硬件设备。而云计算提供的服务是从基础设施(Iaas)到业务基础平台(PaaS)再到应用层(SaaS)的连续的整体的全套服务。IDC数据中心将规模化的硬件服务器整合虚拟到云端,为用户提供的是服务能力和IT效能。用户无需担心任何硬件设备的性能限制问题,例如小鸟云的可弹性扩展资源用量来获得具备高扩展性和高可用的计算能力。
二、云计算和传统IDC在资源集约化速度和规模上的区别
传统IDC,只是在硬件服务器的基础进行有限的整合,例如多台虚拟机共享一台实体服务器性能。但这种简单的集约化受限于单台实体服务器的资源规模,远远不如云计算那样跨实体服务器,甚至跨数据中心的大规模有效整合。更重要的是,传统IDC提供的资源难以承受短时间内的快速再分配。而像小鸟云服务器那样,使用云计算可以实现横向/纵向的弹性资源扩展和快速调度。
三、云计算和传统IDC在资源分配时滞上的区别
众所周知,由于部署和配置实体硬件的缘故,传统IDC资源的交付通常需要数小时甚至数天,将增加企业承受的时间成本,以及更多的精力消耗,并且难以做到实时、快速的资源再分配,且容易造成资源闲置和浪费。云计算,则通过更新的技术实现资源的快速再分配,可以在数分钟甚至几十秒内分配资源实现快速可用,并且云端虚拟资源池中庞大的资源规模使海量资源的快速再分配得以承受,并以此有效地规避资源闲置的风险,使用小鸟云不仅节省IT运营成本,还能提高资源的有效利用率。
四、云计算和传统IDC在平台运行效率上的区别
更加灵活的资源应用方式、更高的技术提升,使云服务商拥有集合优势创新资源利用方式,促进整个平台运作效率提升。例如,根据不同用户需求优化服务器设计和服务器软件更新、网络专线接入等。并且,和传统IDC服务不同,云计算使用户从硬件设备的管理和运维工作中解脱出来,专注内部业务的开发和创新,由云服务商负责云平台本身的稳定。这种责任分担模式使整个平台的运行效率获得提升。
5、中国云计算有多火,看看这家美国上市IDC的财报
一般性的企业应该都是趋向使用云计算了。金融等比较注重信息质量与信息安全的企业,则不会轻易去选择云。云,是一种计算机资源整合方案,相比传统服务器也有质的不同;但目前也存在一定的信息隐私以及安全问题