导航:首页 > 网络营销 > sem结构方程模型

sem结构方程模型

发布时间:2020-07-22 23:09:23

1、学习sem结构方程模型 需要统计学或者数学基础吗

如果目标仅仅是掌握操作自己做一点应用研究,那么不需要多少的数学基础。
但若想要掌握好原理,需要比较强的专业基础的,起码统计学基础和线性代数是要比较熟悉的。

2、如何理解结构方程模型

结构方程模型(SEM, Structural Equation Modeling)是建立在回归模型(Regression Models)的基础上,针对潜变量(Latent Variables)的统计方法。
<img src="https://pic1.mg.com/v2-_b.png" data-rawwidth="308" data-rawheight="260" class="content_image" width="308">f为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为resial error。
f为latent variable, 例如智力、自尊等,在该SEM模型中为predictor。y1,y2,y3为observed variables, 即可直接测量得到的变量,在该SEM模型中为indicators。λ1-3为factor loadings,ε为resial error。
先前提到SEM是建立在regression model基础上的,该模型可写为如下方程:
y1 = λ1*f + ε1
y2 = λ2*f + ε2
y3 = λ3*f + ε3
即可看到与regression model的联系。
SEM较为广泛应用的是方差/协方差估计法。即可由上述方程写出关于y1,y2,y3的方差/协方差矩阵:(σ为f的variance)
<img src="https://pic3.mg.com/v2-_b.png" data-rawwidth="453" data-rawheight="93" class="origin_image zh-lightbox-thumb" width="453" data-original="https://pic3.mg.com/v2-_r.png">而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。
而后计算机根据实际矩阵,对factor loadings等parameters进行估计并输出估计矩阵,与实际矩阵差异最小(最理想)时,即输出结果,得到各估计参数和拟合指数。
应用较多的模型/方法:MIMIC, multiple group models(比较组间差异), latent growth modeling(比较纵向差异)等。
应用广泛的软件:
1、Mplus。优点:编程简单,结果全面。缺点:收费,贵。学生版是300$。
2、Amos。优点:傻瓜,画图拖数据即可。缺点:模型稍一复杂就很费时。
3、R。下个package即可。优点:兼容性、专业性强。缺点:用的人少,不利于伸手党。
4、LISREL。优点:易入门。缺点:需输入各矩阵,略过时。
其他还有一些软件,不了解。
SEM入门不久,以上为个人理解,求探讨求轻喷。么么哒

3、sem的模型概述

结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。

4、请问结构方程模型中,GFI,AGFI,ifi,rfi,nfi等指标是不是一定要0.9以上

最好是大于0.9,甚至于大于0.95,这些拟合指标的临界值都是通过大量的数据模拟得到的,也就是说如果达不到这些指标,模型很可能就是误设模型,不过我也有看到一篇数据模拟的论文里提到当样本量小于500的时候,srmr是最合适的指标,如果小于0.05,可以肯定模型正确,若大于0.08,可以肯定是误设的(适用于数据正态时,偏态时大于0.11认为模型误设),而其他的拟合指标表现不稳定,那这个时候主要参考srmr就可以,其他的指标过得去就行,如果样本量大于1000,NNFI,CFI,IFI这些指标比较合适,0.95以上可以认为模型正确,0.85以下可以断定模型错误(适用于数据偏态时,正态时0.95以下即认为误设)
你自己根据自己的的数据情况看吧,对于你提到的指标,我相信90%的文献都说是0.9以上为标准的,这个经验值还是很可信的,如果你不是正在写论文,那完全可以接受这个结果,如果你一定想要结果好,那就要么好好处理处理数据,重新做一下结构方程的分析,要么就找到相关的文献支持,以表明你用0.9以下的指标数值是合理的
如果是论文答辩或者发论文,只是0.8过一些那很可能要被答辩老师或者审稿人质疑的,接近0.9应该还勉强可以

5、硕士毕业论文涉及sem结构方程模型,有了解amos的大神吗?

结构方程模型可以用SPSSAU。操作非常简单很容易上手,输出标准格式结果和结构图,针对每一步分析还会提供智能分析建议。

结构方程模型-spssau

结构图-spssau

6、用stata做SEM结构方程,如何看拟合优度系数如GFI,AGFI等系数?

最好是大于0.9,甚至于大于0.95,这些拟合指标的临界值都是通过大量的数据模拟得到的,也就是说如果达不到这些指标,模型很可能就是误设模型,不过我也有看到一篇数据模拟的论文里提到当样本量小于500的时候,srmr是最合适的指标,如果小于0.05,可以肯定模型正确,若大于0.08,可以肯定是误设的(适用于数据正态时,偏态时大于0.11认为模型误设),而其他的拟合指标表现不稳定,那这个时候主要参考srmr就可以,其他的指标过得去就行,如果样本量大于1000,NNFI,CFI,IFI这些指标比较合适,0.95以上可以认为模型正确,0.85以下可以断定模型错误(适用于数据偏态时,正态时0.95以下即认为误设)
你自己根据自己的的数据情况看吧,对于你提到的指标,我相信90%的文献都说是0.9以上为标准的,这个经验值还是很可信的,如果你不是正在写论文,那完全可以接受这个结果,如果你一定想要结果好,那就要么好好处理处理数据,重新做一下结构方程的分析,要么就找到相关的文献支持,以表明你用0.9以下的指标数值是合理的
如果是论文答辩或者发论文,只是0.8过一些那很可能要被答辩老师或者审稿人质疑的,接近0.9应该还勉强可以

7、用SPSS可以进行SEM(结构方程模型)建模吗?

用AMOS才可以做结构方程模型
spss做不了SEM

8、spss和amos区别

1、工作分工不同。

spss做前期数据描述和除结构线性模型外的多数统计工作,amos专做结构线性模型相关的统计。

2、使用对象不同。

对量表的区分效度(discrimination validity)检验时,发现有人用SPSS,主要是检验平均提取方差(Average variance extracted,AVE)与该因子与任何其他因子的共同方差(highest shared variance)的值。

而有人则用AMOS,检验修正指数(modification index,MI)的显著性,通过x2/df,NNFI,GFI,AGFI,CFI,RMSEA等拟合优度检验。

3、用途不同。

SPSS是探索性统计分析软件,AMOS是验证性统计分析软件。做探索性因素分析时用SPSS,探索性因素分析完成后,为了验证所得到的因子结构是否合理,就需要进行验证性因素分析。

现在的论文如果涉及因子分析的话,大多要求进行验证性因素分析,以及路径分析等等。这时候,AMOS就派上用场了,AMOS可以进行验证性因素分析、路径分析、群组分析等。

(8)sem结构方程模型扩展资料

SPSS操作功能:

1、参数检验:单样本、两独立样本、配对样本。

2、方差分析:单因素、多因素、协方差分析。

3、非参数检验:X2、二项式分布、K—S检验。

4、相关分析和线性回归分析。

5、聚类分析。

6、因子分析。

7、信度分析。以上的内容是经常用到的,尤其是相关分析和线性回归分析。

与sem结构方程模型相关的知识