1、SD与SEM有区别吗
SD:标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。
假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,
标准差也被称为标准偏差,或者实验标准差,公式为
sem(标准误)
英文:Standard Error of Mean
标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。
标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。
首先要从统计抽样的方面说起。现实生活或者调查研究中,我们常常无法对某类欲进行调查的目标群体的所有成员都加以施测,而只能够在所有成员(即样本)中抽取一些成员出来进行调查,然后利用统计原理和方法对所得数据进行分析,分析出来的数据结果就是样本的结果,然后用样本结果推断总体的情况。一个总体可以抽取出多个样本,所抽取的样本越多,其样本均值就越接近总体数据的平均值。
标准差:表示的就是样本数据的离散程度。标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远。从这里可以看到,标准差受到极值的影响。标准差越小,表明数据越聚集;标准差越大,表明数据越离散。标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个测验测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好。标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积。这在测验分数等值上有重要作用。
标准误:表示的是抽样的误差。因为从一个总体中可以抽取出无数多种样本,每一个样本的数据都是对总体的数据的估计。标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差。标准误是由样本的标准差除以样本容量的开平方来计算的。从这里可以看到,标准误更大的是受到样本容量的影响。样本容量越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表总体。
2、统计学SEM什么意思
标准误(SEM)
英文:Standard Error of Mean标准误
标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。
标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
此外,还需要特别指出的是,标准误还可以指样本标准差、方差等统计量的标准差,不仅仅只是样本均数的标准差。
3、一些文献上为什么一组数据统计之后,用“均数±标准差”表示?或者说均数±标准差”代表什么意思?
只是个描述统计结果而已啊。意思就是均值和标准差,中间是正负号。可以让人对这个变量的分布情况有个概括的认识。若是正态分布的变量,知道了这俩数就可以大略设想出它分布的“高矮胖瘦”
4、如何通过均数,标准差计算统计值
平均值用公式Average可以实现,输入公式=average(数值区域),括号里的为你需要求平均值的数值区域
标准差用公式stdevp可以实现,同AVERAGE用法
5、SPSS 23 怎样求P 只有均数标准差
一组数抄据,你要求什么p值?
如果是两组数据,分别有均数、标准差、样本量。
SPSS 23.0以上:
Analyze分析->Compare Means比较平均值->summary Indepdent-Samples Test摘要独立样本t检验,
填写相关内容就可以做了。
6、均数标准差怎么计算
标准差可以描述样本中的数据分布。计算标准差首先要做一些其他计算。按照这些步骤就可以快速简便地建立等式。
方法 1 的 2:
计算方差
以Calculate Standard Deviation Step 1为标题的图片
1
找出平均数。平均数是样本的平均值,把样本数据加起来然后除以样本数据个数就可以得到。例如:
样本:53, 61, 49, 67, 55, 63
53 + 61 + 49 + 67 + 55 + 63 = 348
348 / 6 = 58
平均数 = 58
以Calculate Standard Deviation Step 2为标题的图片
2
找出方差。方差是数据偏离平均数的程度。得到方差首先要计算单个样本数据和平均数的差,然后平方,再求平均数。例如:
53 – 58 = -5; 61 – 58 = 3; 49 – 58 = -9; 67 – 58 = 9; 55 – 58 = -3; 63 – 58 = 5
(-5)2 + 32 + (-9)2 + 92 + (-3)2 + 52 = 230
230 / 6 = 38.33333
注意,如果样本数据很大,可以除以n-1。所以这里方差可以被计算为:
230 / (6 – 1) = 46
以Calculate Standard Deviation Step 3为标题的图片
3
方差开方即得到标准差。标准差会告诉你数据域平均数的离散程度,约68%的样本数据在一个标准差范围内,如:
√38.3333 = 6.19139
每6个数,就有4个与平均数的偏差在6.19139范围内
方法 2 的 2:
用excel计算方差
以Calculate Standard Deviation Step 4为标题的图片
1
在单元格里输入数据。每个数据都要单独成为单元格。
以Calculate Standard Deviation Step 5为标题的图片
2
选中空单元格。这里要展示最后的标准差结果。
以Calculate Standard Deviation Step 6为标题的图片
3
输入公式。有两种公式可以输入:
“=STDEV(A1:Z99)”把A1变成第一个数据的单元格名称,把Z99变为最后一个数据的单元格名称。
“=STDEVP(A1:Z99)” 这就可以用上面的方法计算方差了。
7、样本均值的标准差是什么
抽样误差的大小用均数的标准差描述,即样本均数的标准差,简称标准误。
从总专体中抽出一个样本,这个样本有属一个均值。具有相同容量的样本不止一个,每次抽的的样本的均值也可能不同,即所抽样本的均值也构成一个统计量。
如果总体的分布一定,那么抽的的样本的均值也服从一个固定的分布。所以,样本均值的期望等于总体期望,标准差根据总体是否有限及其总体分布可计算出。
(7)sem均数的标准差扩展资料:
标准差表示的就是样本数据的离散程度。标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远。从这里可以看到,标准差受到极值的影响。
标准差越小,表明数据越聚集;标准差越大,表明数据越离散。标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平。
8、高分求如何计算“均数±标准差”?统计高手进
均数:是表示数据集中趋势的测度,它的典型公式是:
均数A=(x1+x2+x3+......+xn)/n
标准差:是表示数据专离散性趋势的测属度,它的典型公式是:
标准差D=√{[(x1-A)^2+(x2-A)^2+(x3-A)^2+......+(xn-A)^2]/n}