导航:首页 > 网络营销 > epma与sem关系

epma与sem关系

发布时间:2021-02-19 06:43:48

1、SEM和EPMA实验可以直接得到哪些信息?

SEM是
扫描电子显微镜
,主要用于电子显微成像,接配电子显微分析附件,可做相应的特征分析,
最常用的是聚焦
电子束
和样品相互作用区发射出的元素特征
X-射线
,可用EDS或者WDS进行探测分析,获得微区(作用区)元素成分信息,而EDS或者WDS这类电子显微分析附件却来源于EPMA。
SEM就是一个电子显微分析平台,分析附件可根据用户需要来选配,有需要这个的,有需要那个的,因此
扫描电镜
结构种类具有多样性,从tiny、small、little
style,to
middle、large、huge
style.

就EDS或WDS分析技术来讲,在SEM上使用,基本上使用无
标样
分析,获得很粗糙的
半定量
结果。
而EPMA在SEM商品化10年前,就已经开始实用了,其主要目的,就是要精确获得微米尺度晶粒或颗粒的成分信息.
主要分析手段是WDS,一般配置4个WDS,基于此,EPMA结构比较单一,各品牌型号结构差距不大。EMPA追求电子显微分析结果精准,因此
电子光学
设计不追求高分辨,电子显微分析对汇聚束的要求相匹配即可。
早期EPMA成像手段主要采用同轴
光学显微镜
,然后移动样品台或移动汇聚电子束,找到感兴趣区,当前依然保留同轴光镜,用来校准WD。EMPA对电子光学系统工作条件的稳定性要求超过SEM很多很多,控制系统增加了一些
负反馈
机制,确保分析条件和标样分析保持很小的误差。

2、电子探针X射线微区分析法

一、内容概述

电子探针(EPMA)是用极细的电子束对样品表面进行照射产生特征性X射线,对特征性X射线进行分光和强度测定,得到微小区域的元素组成及样品表面元素浓度分布的分析装置。EPMA 采用波长色散型X 射线分光器(WDS),与能量色散型X 射线分光器(EDS)相比,具有高分辨率的特点。因此,EPMA 与扫描型电子显微镜(SEM)配置EDS检测器比较,可以进行更高精度和更高灵敏度的分析。电子探针应用更多和更有效益的是资源评价和综合利用。

二、应用范围及应用实例

(一)EPMA-1720/1720 H型电子探针

日本岛津公司在19世纪60年代开发出世界首台电子探针“MOSRA”;2009年,推出最新型电子探针EPMA-1720/1720H,分析元素范围4Be—92U,X射线分光器数2~5道,X射线取出角为52.5°,罗兰圆半径为4in(101.6mm),二次电子分辨率分别为6nm(EPMA-1720)和5nm(EPMA-1720H)。

(二)CAMECA场发射电子探针SXFiveFE定量分析辉石矿物及其谱图分析

基于WDS的CAMECA电子探针是唯一实现主量和痕量元素精确定量分析的仪器。场发射源的引入,优化了低电压和高电流,在微区定量分析中,可实现最小的激活体积和尽可能高的空间分辨率。优化的真空系统提供更优的检出能力,对于轻元素有重要意义。可提供无与伦比的显微定量和超高空间分辨率的X射线成像能力。在10 kV、100 nA的实验条件下,使用SXFive的LaB6阴极,可得到0.5μm的分析分辨率,使在微小的区域内测量含量小于0.01%的痕量元素成为可能,并能得到良好的统计精度。

由于CAMECA波谱仪的独特设计,15 s内即可扫描完整个谱仪,同时完成数据采集。SXFive可以配置一个能谱(EDS)用于快速矿产/相鉴别,或配置波谱仪(WDS)用于定量和成像模式。如果配置EDS/WDS可实现高通量产率,用EDS测得主量元素,用WDS测得痕量元素。

首先通过该仪器可以获得斜方辉石内的单斜辉石出溶片晶的X荧光谱图(图1),该片晶只有几百纳米宽。随后利用8kV、20nA的聚焦电子束定量分析了单斜辉石(Cpx)和斜方辉石(Opx)(表1)。

(三)CAMECA场发射电子探针分析石榴子石中的微量和痕量元素

实验给出了300 nA条件下,石榴子石中一个锆石包裹体中的U、Y、Hf的X荧光谱图(图2,图3),显示主要火成岩核心和变质增生。为了在极低浓度下准确获得各元素的分布情况,峰值和背景强度已被映射,然后减去像素-像素。为了取得更好的精度,U的Mβ数为多台光谱仪同时测量的叠加数据。

图1 单斜辉石出溶片晶的X荧光谱图

表1 单斜辉石(Cpx)和斜方辉石(Opx)的定量分析结果

图2 石榴子石中一个锆石包裹体的背散射电子图像(BSE)

(四)CAMECA场发射电子探针分析Fe-Ti氧化物

用该法获得了交代橄榄岩捕虏岩中一个复合铁钛氧化物晶的高空间分辨率X荧光谱图(图4),发现钛铁矿上面长满了原始的含铌金红石,被钛铁矿部分取代,后期形成铁氧化物边缘。Fe和Ti剖面图上沿着红色覆盖线的X荧光强度证明横向分辨率为300 nm(图5)。

(五)独居石中微量元素的成带现象

用该法分析了独居石晶体中Y和Th的分布情况(图6):Y为0.4% ~1%,Th 达0.7%。整个晶体的分析条件为CAMECA EPMA 2554+/-8m.y.,较薄的垂向裂隙充填物的分析条件为1837+/-5 m.y.。

图3 锆石包裹体中的U、Y、Hf的X荧光谱图

图4 复合铁钛氧化物晶的高空间分辨率X 荧光谱图

图5 Fe和Ti剖面图

(样品由F.kalfoun,D.Lonov,C.Merlet提供)

图6 独居石晶体中Y和Th的分布情况

三、资料来源

www.cameca.com.The Fifth Generation Electron Probe—X⁃ray Spectrometr⁃ray Spectrometry Chemical Microanalysis Quantitative Mapping

3、电子探针和扫描电镜X射线能谱定量分析通则

GB-T 17359—1998 (中文) 电子探针和扫描电镜X射线能谱定量分析

本标准规定了与电子探针和扫描电镜联用的X射线能谱仪的定量分析方法的技术要求和规范。本标准适用于电子探针和扫描电镜X射线能谱仪对块状试样的定量分析。

下载地址:
http://www.instrument.com.cn/show/download/shtml/027247.shtml

以上,希望对你有所帮助。

4、请以钢铁材料为例,简述扫描电镜及 电子探针X射线能谱仪在材料组织形 貌观察及微区成分分析中应用

在设备发展历史当中,扫描电镜首先发明,但开始阶段扫描电镜分辨率对于光学显微镜没有优势,电子探针优先扫描电镜商品化应用。
最早的电子探针不能成像,将光学显微镜集成在电子光学镜筒中,使用光学显微镜观察组织形貌,然后调节偏转线圈,将电子束定位在感兴趣区域,使用x射线波谱仪对该区域的化学成分进行定性定量。电子探针主要应用在金属材料和矿物研究方面,对于金相学和岩相学的发展完善起到关键作用。

对于金属材料,断口失效微观分析是最需要经常观察的,在扫描电镜可以承担重任之前,都采用透射电镜复制断口形貌(C膜复形),采用扫描透射方式观察,费时费力。

可以直接观察断口形貌特征的扫描电镜,一直在极力发展当中,随着二次电子探测器的改进,和成像理论的完善,扫描电镜分辨率有了实质性提高,扫描电镜进入商品化发展阶段。金属材料粗糙断口微观形貌基本不再使用透射电镜,在扫描电镜之下一目了然,而且扫描电镜可以从肉眼可见的宏观区域到微米量级区域结构进行大景深很有立体感的观察,极大改善了研究条件。

随着扫描电镜技术突破,电子探针紧跟着进行改进,集成扫描电镜技术及X射线波谱技术,可以微观成像,在远超过光学显微镜视力范围的感兴趣区域进行精确化学成分分析。

扫描电镜进入商品化初期,分辨率距离理论分辨率还有非常大的差距,因此扫描电镜的商品化发展非常迅速,到目前为止最好的扫描电镜,已经基本接近当前一般设计的理论分辨率。由于电子探针的使命是进行X射线微区分析,而X射线作用区的空间分辨率理论上被定位在一到几个微米范围,和电子光学系统分辨率关系不大。因此电子探针技术并不追求高分辨率。就目前来说,钨灯丝电子探针的分辨率基本停留在上世纪七十年代扫描电镜的分辨率水平,就足够了。

半导体材料在X射线探测技术上的应用,导致X射线能谱仪的发明和迅速广泛使用。X射线能谱仪可以同时分析进入探测硅片的所有元素特征X射线,同时展谱,而WDS对元素逐个搜索和展谱需要漫长的时间,早期一个元素定性可能都需要几个小时,而EDS只需要几分钟即可对所有元素完美实现定性。因此EDS被广泛配置在SEM中,用于高分辨观察和微区化学定性及半定量研究,在金属材料断口分析中起到重要作用;同时EDS也被配置在电子探针当中主要用于化学定性,替代WDS漫长的搜索定性,WDS直接用EDS结果直接进行定量分析,极大提高了电子探针的分析速度。

另外电子探针的WDS定量分析,都使用标准样品。而EDS大多进行无标样分析。

---- 以上讲的可能太罗嗦,希望有点用!

5、sem和tem中的电子探针的分析精度相同吗?如果不同,请说出为什么

SEM说俗了 就是用高速的电子打击标本 捕获打回来的电子 然后电脑分析 得到的图象就是物体表面的照片 和普通黑白照片没区别 只不过是很小很小的物体 在纳米级别上的迷你照片~ 电子探针就不一样了 全名为电子探针X射线显微分析仪

6、电子探针仪与扫描电镜有何异同

二者最主要的不同是其工作原理不同。
电子探针仪,学名应该是扫描隧道显微镜(scanning tunnel microscopy,STM),它的工作原理是用一个针尖在离样品表面极近的位置慢慢划过,样品和针尖上加有恒定电压,随着针尖和样品起伏不平的表面原子距离的改变,二者间的电流会有变化,记录这个电流的变化进行处理后,可以得到表面的形貌像,这是其中的一个工作方式,还有针尖位置不变,电压变化的工作方式等。另外STM发展的非常蓬勃,衍生出很多其他类似的分支电镜,如AFM等。
扫描电子显微镜(scanning electron microscopy,SEM),是通过电子束对样品表面进行反复的扫射,通过探头收集反射回来的二次电子和背散射电子来进行成像。
二者相同的地方则是主要用作测样品表面形貌的仪器

7、SEM和电子探针使用特征的问题

SEM说俗了 就是用高速的电子打击标本 捕获打回来的电子 然后电脑分析 得到的图象就是物体表面的照片 和普通黑白照片没区别 只不过是很小很小的物体 在纳米级别上的迷你照片~

电子探针就不一样了 全名为电子探针X射线显微分析仪 又名微区X射线谱分析仪 听着听深奥 实际上就是把高速的电子打在物体上 这点和SEM一样 但是它捕获的不是电子 它要的是物体受到电子攻击产生的X线``(如果你大学物理学的好没挂科的话你应该记得一个叫做特征X线 它要的就是这个玩意) 因为这个X线含有标本的化学成分信息``所以它长用来分析物体里有什么 这样我们就知道标本里面有多少氢多少氧等等`

总结就是:都把高速的电子打到了标本上 SEM捕获了反弹回来的电子 从而知道了物体表面长什么样子 电子探针捕获了物体激发出来的X光 从而知道了物体里面有什么成分

8、单矿物分析与电子探针区别?

不破坏样品:经过电子探针分析的样品,并不受到任何破坏,还可以进行其它方面的测定,这对稀少珍贵的样品,如陨石、月岩及极难发现的新矿物,电子探针分析是最理想的分析手段。

2.直观:电子探针除了能进行点分析外,还可以进行线扫描和面分析,这对了解样品中元素的分布规律、共生关系和赋存状态等提供了大量基础资料。我所的JXA一73 电子探针附有TN一5500能谱仪,它的微扫描理序可以把矿物表面不同元素的分布状态用不同颜色在彩色荧光屏上显示出来,这样不但直观感强,且有一目了然之效。

3.快速:因为电子探针一般都有三至四道谱仪同时对不同元素进行分析,并且都是由计算机自动操作和修正计算的,国而分析速度快,成本也较低。尤其是附带有能谱仪后,更加快了分析速度。总之,电子探针分析为我们提供了一种很理想的岩矿测试手段,它是现代地质学上必不可少的一种测试仪器。

(二)电子探针分析的基木原理

由电子枪发射的电子波加速、聚焦后,具有一定的能量,当其照射到样品上后.使样品的电子层受到激发,从而产生特征X射线。不同的元素,其特征X射线的波长不一样,根据这些特征X射线的波长便可知道样品中含有哪些元素,这就是定性分析。样品中某种元素的含量越多,所产生的特征X射线的强度也就越大.田此,根据某元素的特征X封线强度的大小,也就可以计算出某元素的含量,这就是定量分析。电子束照射到样品上以后,除了产生特征X射线外,还产生二次电子、背散射电子、吸收电子等物理信息。利用这些物理信息就可以进行扫猫图像的观察,主要有二次电子像、背散射电子像、吸收电子像,这就是扫描电子显微镜的功能。

二、在矿物学研究中的应用

EPMA技术在矿物学研究领域的应用非常广泛,在一些综述性文章中已有比较详细的描述,本文主要论述电子探针分析在普通矿物学和应用矿物学(包括矿产综合利用)等方面的应用成果。

(一)矿物鉴定

众所周知,矿物学家通常用偏反光显微镜观察和测定矿物的光学性质和其他物理性质来认识矿物。但矿物的光学及物理性质均是矿物内在特征的外部表现。所以从本质上来说,根据这些性质和参数只能大致地定性认识矿物。况且一些不同种类的矿物之间其光性和物性往往非常相似, 因此用通常的手段难以准确地鉴定矿物,尤其是在鉴定铂族元素矿物和其他稀有元素矿物时,由于矿物粒度一般都很细微,难以准确测定其光性和物性。所以,要准确鉴定矿物,必须对其化学成分和晶体结构等本质特征进行准确测定。 由于电子探针能准确地测定矿物的化学成分从而准确地得出矿物化学式。而且能对光片或光薄片上的矿物一面用显微镜观察一面进行分析,更因它不破坏样品,从而使电子探针成为最为有效和最常用的矿物鉴定手段。因此,电子探针的应用使得一些原来无法识别的矿物得到准确的鉴定,同时也纠正了从前一些错误或不甚准确的认识和结论。

例如,我们在对西藏东巧超基性岩铬铂矿物质组成研究过程中,发现一种与硫钌矿和等轴铁铂矿紧密连生的矿物 这种矿物很稀少,一共只发现3颗,且粒度很小,具金属光泽,反射率比硫钌矿低得多。众所周知,在已知的铂族元素矿物中,硫钌矿的反射率几乎是最低的。所以当时估计与琉钌矿连生的这种矿物可能是一般金属矿物,困此未予注意。后来在工作中顺便对该矿物进行能谱(EDS)定性分析,发现其主要化学成分为Ru和Fe,此外还含少量Os和Ir,属铂族元素矿物,从而引起了我们的兴趣和注意。随后进行了能谱和被谱(WDS)定量分析,结果表明,Ru、Fe,Os ,Ir的含量总和只有78%左右。这说明还有20%左右其他组分。仔细观察EDS谱,发现该矿物的光学性质和其他物理性质与铁钌矿的差别很大。 因而推测该矿物分子式中除 了Ru,Fe、Os,Ir以外。可能还有某种或某几种超轻元素(B、C、N、O、F)存在。(摘至《地质实验室》,毛水和)

(二)不可见金赋存状态的研究

有一类含金矿石中金的品味相当高,有时可达几十克/吨。尽管在高倍显微镜下对大量精细抛光的光片进行仔细观察也找不到金的独立矿物。通常将这种矿石中的金称为不可见金,或叫超显微金。

虽然矿物工作者可以挑取一定数量的各种可能载金矿物,通过试金分析而获知金在各种矿物相中的平均含量,但是无法直接了解金的赋存状态、含量、与载金矿物粒度、晶形和部位的关系。过去对于不可见金的赋存形式和机制有过一些假设和推论。有人认为金呈超微组包裹体存在,有人则认为金以粪质同象取代方式存在于黄铁矿,毒砂等载金矿物当中。但这些假设和推断都缺乏直接的实验依据,很难令人信服。

对采集于贵州某地品位为31.02g/t的不可见金矿石样品,我们先进行常规的矿物学和物质组成研究,初步确定黄铁矿是最主要的载金矿物。然后对各种类型的黄铁矿进行大量的SEM图象观察和EPMA研究,有效地查清了载金矿物相中不同部位金的分布和富集规律,查明了不同粒度,不同晶形,不同成矿期的载金矿物中金的赋存特征。而且将不可见金的分布特征间接地以可见的形式表示出来,从而为选择经济、合理、有效的加工模拟金的工艺提供科学依据。

三、在矿产综合利用研究的应用

人们越来越清楚地认识到,矿石的工艺矿物学研究是搞好矿产资源的综台评价和利用的基础,因为只有查清矿石的物质组成,有益和有害元素的赋存状态、矿物原生粒度、各种矿物的共生组合关系和矿石结构构造等才能有的放矢地选择最合理最有效的矿物加工提取工艺,以便最大限度地提高回收率和精矿品位。然而,由于岩矿测试手段和方法的限制,过去对一些复杂矿床的物质组成元素赋存状态一直搞不清楚,因而不能有效地进行综合评价开发和利用,同时由于矿物加工技术比较落后,致使许多有用组分被白白丢弃,许多宝贵的资源被当成废物。近年来,由于EPMA技术在工艺矿物学方面的应用逐步深入,很多复杂矿床的物质组成研究水平得到大幅度地提高,同时也最大限度地提高了矿产资源综合评价和利用水平。

关于EPMA在矿产综合利用研究中的应用,这里仅举一个例子。四川某多金属矿床中主要金属元素为Cu、Pb、zn,Ag,有益伴生元素为Au、Cd、Sb,As。物质组成研究查明,矿石中主要金属矿物为方铅矿,黝铜矿、黄铁矿,其次为毒砂、硫锑铅矿,车轮矿、磁黄铁矿,斑铜矿、蓝辉铜矿等。原矿中Ag的品位为(g/t),富矿679.9,中矿12.3,贫矿3.2。矿床中的Ag具有工业利用价值,应综合考虑对Ag的回收。长期以来,虽经多方努力,但在矿石中仍未找到到银的独立矿物,也未能查清银的赋存状态,因此难以考虑银的回收。曾怀疑Ag是否以类质同象的形式分散状态分布在多种金属矿物或脉石矿物中。固此查清Ag的赋存状态成了对矿床中的Ag进行综合评价和回收的关键问题。对矿石中的一些主要矿物进行电子探针分析后发现,黝铜矿仍是矿床的主要含银矿物。

而黝铜矿又是该矿床的主要矿物之一,在矿石中所占的矿物量为7.94﹪。银的分布率试验查明,Ag在黝铜矿中的分布翠为93.32﹪。由此可见,只要选择合适的加工工艺将黝铜矿有效地富集回收,即可将矿床中的绝大部分Ag加以回收。

黝铜矿单矿物的EPMA数据

四、造岩矿物全分析

在地学领域中,常常需要研究有关造岩矿物的化学组成。虽然化学分析方法具有容易得到平均成分和精度较高等优点,但分析周期太长。而EPMA具育快速和一边分析一边进行扫描图象观察等优点,因此,长期以来就在摸索用电子探针进行造岩矿物全分析的实验方法。大致有三种方法在实际工作中是行之有效的。

1.扩大束径法:如果岩石样品中的矿物颗粒都很细小,例如均小于几微米,则可将电子柬径扩大至 200微米左右,在岩石光片或光薄片上直接分析。为使分析值尽可能接近岩石样品的平均化学成分,应在光片上尽可能多分析一些区域以求得平均含量。Prinz等用该方法进行了月岩样品的分析井获得满意的结果。不过,采用这种方法对基质效应的修正计算是假定样品是均匀的,因此,样品中矿物颗粒比较粗大或分析区域数太少,则上述假设很难成立,误差会较大。

点击加载更多
剩余17%未读
金属探伤仪的特征及应用是什么?
有很多,比如用超声的反射来测量距离,利用大功率超声的振动来清除附着在锅炉上面的水垢,利用高能超声做成 "超声刀"来消灭、击碎人体内的癌变、结石等,超声波探伤仪

与epma与sem关系相关的知识