1、场发射扫描电镜和环境扫描电镜的区别。
扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。
电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。
价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。
六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。
场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。
目前常见的场发射电子枪有两种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF)
当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。
场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。
要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。
冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电
流最小。
热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。
2、扫描透射电镜(STEM)有哪些特点?
扫描透射电镜(STEM)的特点:
(1)STEM技术要求较高,要非常高的真空度,并且电子学系统比TEM和SEM都要复杂。
(2)加速电压低,可显著减少电子束对样品的损伤,而且可大大提高图像的衬度,特别适合于有机高分子、生物等软材料样品的透射分析。
(3)可以观察较厚的试样和低衬度的试样。
(4)扫描透射模式时物镜的强激励,可以实现微区衍射。
(5)应用扫描电镜的STEM模式观察生物样品时,样品无需染色直接观察即可获得较 高衬度的图像。
3、哪位大神可以清楚的告诉我SEM,EDS,XRD的区别以及各自的应用
SEM,EDS,XRD的区别,SEM是扫描电镜,EDS是扫描电镜上配搭的一个用于微区分析成分的配件——能谱仪。能谱仪(EDS,Energy Dispersive Spectrometer)是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。XRD是X射线衍射仪,是用于物相分析的检测设备。
扫描电子显微镜(scanning electron microscope,SEM,图2-17、18、19)于20世纪60年 代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样 品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子 束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束 的轰击下发出次级电子信号。 目前扫描电镜的分辨力为6~10nm,人眼能够区别荧光屏上两个相距0.2mm的光点,则扫描电镜的最大有效放大倍率为0.2mm/10nm=20000X。
EDS的原理是各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,能谱仪就是利用不同元素X射线光子特征能量不同这一特点来进行成分分析的。使用范围:
1、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;
2、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;
3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;
4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;
5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。
4、扫描电镜与透射电镜的区别?
1、结构差异:
主要体现在样品在电子束光路中的位置不同。透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,电子源在样品上方发射的电子束,经过几级电磁透镜缩小,到达样品。当然后续的信号探侧处理系统的结构也会不同,但从基本物理原理上讲没什么实质性差别。
2、基本工作原理:
透射电镜:电子束在穿过样品时,会和样品中的原子发生散射,样品上某一点同时穿过的电子方向是不同,这样品上的这一点在物镜1-2倍焦距之间,这些电子通过过物镜放大后重新汇聚,形成该点一个放大的实像,这个和凸透镜成像原理相同。这里边有个反差形成机制理论比较深就不讲,但可以这么想象,如果样品内部是绝对均匀的物质,没有晶界,没有原子晶格结构,那么放大的图像也不会有任何反差,事实上这种物质不存在,所以才会有这种仪器存在的理由。
扫描电镜:电子束到达样品,激发样品中的二次电子,二次电子被探测器接收,通过信号处理并调制显示器上一个像素发光,由于电子束斑直径是纳米级别,而显示器的像素是100微米以上,这个100微米以上像素所发出的光,就代表样品上被电子束激发的区域所发出的光。实现样品上这个物点的放大。如果让电子束在样品的一定区域做光栅扫描,并且从几何排列上一一对应调制显示器的像素的亮度,便实现这个样品区域的放大成像。
3、对样品要求
(1)扫描电镜
SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法将特定剖面呈现出来,从而转化为可以观察的表面。这样的表面如果直接观察,看到的只有表面加工损伤,一般要利用不同的化学溶液进行择优腐蚀,才能产生有利于观察的衬度。不过腐蚀会使样品失去原结构的部分真实情况,同时引入部分人为的干扰,对样品中厚度极小的薄层来说,造成的误差更大。
(2)透射电镜
由于TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,例如存储器器件的TEM样品一般只能有10~100nm的厚度,这给TEM制样带来很大的难度。初学者在制样过程中用手工或者机械控制磨制的成品率不高,一旦过度削磨则使该样品报废。TEM制样的另一个问题是观测点的定位,一般的制样只能获得10mm量级的薄的观测范围,这在需要精确定位分析的时候,目标往往落在观测范围之外。目前比较理想的解决方法是通过聚焦离子束刻蚀(FIB)来进行精细加工。
透射电子显微镜的成像原理 可分为三种情况:
(1)吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。
(2)衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。
(3)相位像:当样品薄至100Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。
5、扫描电子显微镜的工作原理
扫描电子显微镜的工作原理:
扫描电子显微镜的制造依据是电子与物质的相互作用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。
(5)sem扫描扩展资料:
研发历程:
1873 Abbe 和Helmholfz 分别提出解像力与照射光的波长成反比。奠定了显微镜的理论基础。
1931德国物理学家Knoll 及Ruska 首先发展出穿透式电子显微镜原型机。
1938 第一部扫描电子显微镜由Von Ardenne 发展成功。
1959年第一台100KV电子显微镜 1975年第一台扫描电子显微镜DX3 在中国科学院科学仪器厂(现北京中科科仪技术发展有限责任公司)研发成功。
6、SEM扫描电镜图怎么看,图上各参数都代表什么意思
1、放大率:
与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕/照片面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
2、场深:
在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的会焦而成象。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。
3、作用体积:
电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。
4、工作距离:
工作距离指从物镜到样品最高点的垂直距离。
如果增加工作距离,可以在其他条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其他条件不变的情况下获得更高的分辨率。通常使用的工作距离在5毫米到10毫米之间。
5、成象:
次级电子和背散射电子可以用于成象,但后者不如前者,所以通常使用次级电子。
6、表面分析:
欧革电子、特征X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。
表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在但耗时太长。
观察方法:
如果图像是规则的(具螺旋对称的活体高分子物质或结晶),则将电镜像放在光衍射计上可容易地观察图像的平行周期性。
尤其用光过滤法,即只留衍射像上有周期性的衍射斑,将其他部分遮蔽使重新衍射,则会得到背景干扰少的鲜明图像。
(6)sem扫描扩展资料:
SEM扫描电镜图的分析方法:
从干扰严重的电镜照片中找出真实图像的方法。在电镜照片中,有时因为背景干扰严重,只用肉眼观察不能判断出目的物的图像。
图像与其衍射像之间存在着数学的傅立叶变换关系,所以将电镜像用光度计扫描,使各点的浓淡数值化,将之进行傅立叶变换,便可求出衍射像〔衍射斑的强度(振幅的2乘)和其相位〕。
将其相位与从电子衍射或X射线衍射强度所得的振幅组合起来进行傅立叶变换,则会得到更鲜明的图像。此法对属于活体膜之一的紫膜等一些由二维结晶所成的材料特别适用。
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
7、扫描透射电镜(STEM)有哪些特点
透射电镜(TEM)和扫描透射电镜(STEM)都是使用电子束使样品成像的相关技术。使用高能电子作用于超薄样本使成像分辨率达1-2埃的数量级。与SEM相比,TEM具有更好的空间分辨率,更适用于若干分析测量。但需要多得多的样品准备. 虽然比大多数其他常见分析工具更费时,但是这些实验的宝贵信息是令人赞叹的。 你不仅可以取得优异图像分辨率、结晶状态、晶向(都以衍射实验模式)、元素图(使用EDS)、突出元素对比度的图象 (暗场模式)-所有这些都来自可精确定位的纳米尺寸大小的面积。STEM和TEM可以作为薄膜及IC样品的最终失效分析工具。
8、扫描电镜(SEM)测试是怎么收费的
扫描电镜(SEM)测试各地不一样的,最少的也要几百块啊
9、扫描电镜sem的主要原理是什么?测试过程需要重点注意哪些操作
电镜的原理是:电子枪发出电子束打到样品表面,激发出二次电子、背散射电子、X-ray等特征信号,经收集转化为数字信号,得到相应的形貌或成分信息。
测试注意事项:
1、新人找别人帮忙测试时,
明确自己的测试内容,如何样品前处理,测试时间,然后跟测试相关人员联系确定能否满足你的测试需求
2、新人自己操作测试时,
明确自己的测试内容,如何样品前处理,测试时间,
测试时注意样品干燥洁净,操作时样品和样品台避免撞到探头
10、扫描电镜sem和透射电镜tem对样品有何要求
透射电镜是用高能电子束(加速电压一般在200KV以上)照射样品,透过样品的电子由于样品厚度、元素、缺陷、晶体结构等的不同,会产生不同的花样或图像衬度,由此可以推测样品的相关信息。由于电子束要能透过样品,因此样品厚度要求很薄,一般要小于100纳米。如果要做高分辨,要求更薄。