1、新媒体,大数据跟企业发展之间是怎样的关系
泻药!
新媒体(微信,微博等)是互联网跟实体的一座桥梁,未来社会的形态也是线上线下的联动。
大数据对于企业的应用,除了内部信息整合,还有外部信息采集。
内部的不说了。
说说外部。
外部来说,就涉及到信息采集,还有采集后的工作,可以成为舆情监测。
论坛、微博、博客、新闻评论作是目前网民在网络上发表个人意见的四大阵地,由于网民的数量庞大,发表信息没有门槛,相关信息传播速度极快,其形成的力量对于公司的品牌形象及产品的口碑正发挥着越来越大的影响。-采34534533集-
网络上用户的评论中的赞扬、喜好、抱怨等信息其实蕴含着巨大的商机,它是我们窥探竞争对手产品弱点以及发现新的用户需求与喜好的丰富来源。这些信息对于公关部门、品牌部门、研发部门深入了解用户状态与心理非常有帮助。
网络口碑在很大程度上也是现实口碑的一种反映,无论是正面评价还是负面评价都可以被迅速传播,而其中的负面评价更会被迅速放大。好的口碑传播可以推动企业的产品销售,而负面口碑的传播可以迅速导致企业的危机。
对于一家知名企业,关于网络口碑需要了解以下问题:
用户意见表达平台中关于自己品牌的言论有哪些?分属哪些类别?哪些具有重要反馈意义?哪些具有正面价值?哪些具有负面价值?究竟是谁在何时发表的这个意见?有多少人看了这个意见?有多少人回复了这个意见?哪些需要引导?哪些需要应对?哪些需要危机预警?26禁止9盗用0
用户意见表达平台中关于竞争品牌的言论有哪些?分属哪些类别?哪些具有重要反馈意义?哪些具有正面价值?哪些具有负面价值?哪些需要利用?
实时收集分类整理用户的各种评价信息是公司口碑监测的重点。
这就需要信息采集系统和舆情监测系统了。
它们工作原理,或者说解决方案就是这样的,这一类的系统一般是基于web2db knowlesys这一类的技术,这类技术的特点就有事抓得多同事抓得准,把标题,日期等都抓回来了。
2、传统的会计行业如何与人工智能、大数据、新媒体、等新兴科技手段相结合?
你好。其实这个传统行业要是能够跟现在的技术结合起来,那确实还是比较好的。
其实已经有很多地方有这些应用了,在做大数据,人工智能等方面,其实还要是会用到一些统计学方面的一些内容。这个跟会计方面的一些知识也是能够联系到一起的。
不过要想在会计行业能够把这些科技手段应用起来的话,还是需要一些更方便的数据处理软件,不只是excel目前这样子的。
3、大数据与新媒体之间又存在着什么样的联系呢?大数据给新媒体带来了哪些新变化?
大数据之所以可能成为一个时代,在很多程度上是因为这是一个可以由社会各界广泛参与,八面出击,处处结果的社会运动,而不仅仅是少数专家学者的研究对象。数据产生于各行各业,这场变革也必将影响到各行各业,因此,机遇也蕴含于各行各业。致力于IT创业的人们紧紧盯着这个市场,洞察着每一个机遇。
数据对于科学进步有推动的作用,而海量数据对数据的分析既带来了机遇,也构成了新的挑战。随着大数据的迅速发展,许多企业开始着手于大数据分析项目。大数据的能量和其为企业带来的竞争力优势已经逐渐显现,现在大数据已经成为商业智能、分析和数据管理市场领域中讨论度最高的话题之一,当然也是最热门的流行语之一。
如果说云计算主要提供了强大的后台运算能力,对大众来说,看不见摸不着;那么大数据却是和人们的生活紧密相关的。大数据应用随处可见可感可知。
未来会在内容自动采编、智能个性化推荐、数字化设备皮肤化(可穿戴设备、人体植入式设备...)的基础上,形成一个跨平台(SEM、展示广告位、信息流广告位、订阅推荐位...)、跨内容形式(文本、流媒体...)、跨交易类型(用户付费订阅、用户付费购买、广告主付费推广、平台付费内容采编...)的内容交易所。
4、新媒体中大数据的应用有哪些?
新 媒 体 大 数 据 应 用 场 景 主 要 为 以 下 四 个 方 面 :
1 、 政 务 治 理 方 面 ;
包 含 舆 情 监 测 、 风 险 发 现 , 风 险 防 范 、 风 险 判 断 、 应 急 指 挥 、 精 准 调 研 、 议 题 引 导 、 引 导 效 果 评 估 、 决 策 辅 助 等 。
2 、 企 业 品 牌 管 理 方 面 ;
包 含 品 牌 口 碑 管 理 、 品 牌 传 播 管 理 、 品 牌 战 略 管 理 ( 竞 争 力 评 估 、 行 业 环 境 评 估 等 )
3 、 媒 体 传 播 方 面 ;
包 含 追 踪 热 点 、 编 辑 选 题 、 数 据 新 闻 等
4 、 科 研 教 学 方 面 ;
包 含 学 校 师 生 研 究 课 题 、 教 学 案 例 等
新 媒 体 大 数 据 已 运 用 到 工 作 生 活 的 方 方 面 面 , 政 企 单 位 如 有 新 媒 体 大 数 据 需 求 , 可 选 择 新 浪 舆 情 通 , 新 媒 体 大 数 据 服 务 平 台 , 打 造 场 景 化 大 数 据 应 用 。 政 企 用 户 前 往 官 网 免 费 注 册 使 用 。。您的采纳是对我工作的支持
5、大数据时代下新媒体广告有哪些特点
实效性
报纸、杂志的广告内容基本无法做到实效,除了发行当时一段时间,之后这些广告将成为历史,也无人会关注。而新媒体广告用户的主动性,互联网引擎本身的时间优先性,再经过卓战科技大数据分析使得新媒体给用户的信息都是最近的。
转化率高
转化率就是从广告变成成交的几率,和传统媒体相比,新媒体广告,连接的是强大的电商平台,迅捷的成交过程,方便得物流过程,还没等兴奋衰减,已经支付完成了。之后就是该受众会进行更兴奋的自我修复过程,分享、朋友圈。
交互性强
与传统媒体单向发送来等鱼上钩这种模式相比,大数据新媒体使用的是按需要推送,受众可以通过各种渠道来主动获取所需的广告信息。比如说通过引擎搜索来搜寻,手机app来检索。
便利性且广告模式灵活
互联网广告无处不在,可以在你的手机里,电脑上,接头的LED大屏幕,地铁里,只需要打开你手头上的屏幕,如手机平板电脑等,这些都是随身而致的。可以通过点击付费,关注付费,而不是数人流量这种粗犷的方式。
具有精准性
当用户自己需要某些广告的时候,卓战科技大数据下的新媒体会过滤掉许多与搜索内容无关的广告内容,从而达到由需求带入广告的精准性。
6、大数据在军事领域有哪些应用
在军事上,用小数据时代的理念和技术,很难与大数据时代的思维和技能相对抗。面对大数据时代的军事机遇和挑战,要么主动进击,要么被动跟进,难以置之度 外。其间的取舍与成败,首先有赖于思维变革,其要求全体军事人员尤其是指挥员,更加具备基于体系作战的系统思维、基于数据模型的精确思维及基于对战争进行 科学预设的前瞻思维。
大数据创新了军事管理方法,且这种创新是全方位的--除了可以提高包含阅兵在内的军事训练水平,还可以:
1.提高军事管理水平
管理大师戴明与德鲁克都曾提出:“不会量化就无法管理”。数据的根本价值之一,就是可作为管理依据。大数据应用的特点是强调分析与某事物相关的总体数据, 而不是抽取少量的数据样本;大数据关注事物的混杂性,而不追求事物的精确性;大数据注重事物的相关关系,而不探求其间的因果关系。
将大数据应用于军事领域,意味着军事管理将更加刚性,基本不受人为因素的影响,且更加自动化。所以说,大数据强军的内涵,本质上是军事管理科学化程度的提 高,即与小数据比起来,由于有了大数据,军事管理活动量化程度更高了,工具更加先进了,边界更加宽广了,管理质量、效率会随之更高。
2.丰富军事科研方法
通常人们研究战争机理、找寻战争规律的方法有三种,又称为三大范式:实验科学范式,在战前通过反复的实兵对抗演习来论证和改进作战方案;理论科学范式,采用数学公式描述交战的过程,如经典的兰彻斯特方程;计算科学范式,基于计算机开发出模拟系统来模拟不同作战单元之间的交战场景。
但是,上述研究范式只能使人们感知交战的过程和结果,并未有效提高对海量数据的管理、存储和分析能力。
以大数据为核心技术的数据挖掘模式被称为第四战争研究范式。人 们可以有效利用大数据,探寻信息化战争的内在规律,而不是被淹没在海量数据中一筹莫展。大数据研究范式由软件处理各种传感器或模拟实验产生的大量数据,将 得到的信息或知识存储在计算机中,基于数据而非已有规则编写程序,再利用包括量子计算机在内的各种高性能计算机对海量信息进行挖掘,由计算机智能化寻找隐 藏在数据中的关联,从而发现未知规律,捕获有价值的情报信息。
例如,在第一次海湾战争前,美军就利用改进的“兵棋”,对战争进程、结果及伤亡人数进行了推演,推演结果与战争的实际结果基本一致。而在伊拉克战争前,美 军利用计算机兵棋系统进行演习,推演“打击伊拉克”作战预案。随后美军现实中进攻伊拉克并取得胜利的行动,也和兵棋推演的结果几乎完全一致。
作战模拟早已经从人工模式转变为计算机模式,再加上大数据,战前的模拟推演,从武器使用、战争打法到指挥手段,都可以清晰地显现,是非常好的战时决策依据。一旦发现作战计划有问题,可以及时调整,以确保实战伤亡最小并取得胜利。
3.加速型武器装备面世
大数据在武器装备上的广泛应用,意味着武器装备建设将从重视研发信息系统到重视数据处理与应用的转变,从注重信息系统的互联互通到注重信息系统的透明性互 操作的转变。当前武器装备的信息化程度越来越高,装备体系内各个节点之间的信息共享也越来越方便、可靠,但由此也带来了一些突出问题,如原始信息规模过 大、价值不够高、直接提取所需信息的难度增加等,从而使得武器装备体系在信息获取效率上大打折扣。在这种背景下产生的大数据为解决上述问题提供了有效方 法。
需要说明的是:大数据应用不仅意味着人们要以创新方式使用海量数据,还意味着人们要采用人工智能技术来处理自然文本和进行知识表述,以替代目前依赖专家和技术人员昂贵而又耗时的信息处理方式。
大数据与人工智能是一而二、二而一的关系。受益于大数据技术,武器装备体系将从战场上的信息使用者升级为高度智能化和自主化的系统。其具体流程为:经 过智能处理后的高价值信息进入战场网络链路后,与战场网络融为一体的武器装备体系能实时自动感知面临的有关威胁,各装备节点自动感知包括我情和敌情在内的 战场态势,在作战人员的有限参与下高度自主地分解作战任务,确定作战目标和行动方案,经过适当的审批流程后执行相关的作战行动。
在这方面走在前列的仍然是美军。美军大数据研究的第一个重要目标是通过大数据创建真正能自主决策、自主行动的无人系统。这一点已在无人机领域实现。美军希 望无人机可以完全摆脱人的控制而实现自主行动。美军2013年试飞的X-47B就是这一系统的代表,它已经可以在完全无人干预的情况下自动在航母上完成起 降并执行作战任务。
4.提升情报分析能力
19世纪初,军事战略家克劳塞维茨以人的认知局限为由,提出了“战争迷雾”概念。显然,“战争迷雾”即“数据迷雾”。信息战首先得消除“战争迷雾”。信息 战是体系对体系的战争,而这一体系是一个超级复杂的巨大系统,仅诸军兵种庞杂的武器装备和作战环境数据,就足以大到使普通的信息处理能力捉襟见肘;而敌我 对抗的复杂化,更是让数据量呈爆炸式增长,从而带来比传统战争更多的“数据迷雾”。可以说,信息化战争的机制深藏在“数据迷雾”中。
消除“战争迷雾”会提高指挥员的情报分析与军情预测能力。过去,由于可以掌握的数据不足,战争的不确定性很高,指挥员很容易陷在“战争迷雾”之中。而大数据最重要的价值之一是预测,即把数据算法运用到海量的数据上来预测事情发生的可能性。
具体而言,未来完全可能依托大数据分析处理技术和建构模型,通过数据挖掘模式,从海量数据中挖掘出有价值的信息,及时准确掌握敌方的战略企图、作战规律和 兵力配置,真正做到“知己知彼”,使战场变得清晰透明,从而拨开“战争迷雾”,达成运筹于帷幄之中、决胜于千里之外的作战目的。
对此趋势,很多国家及其军队都极为看重。例如,美军明确提出,要通过大数据将其情报分析能力提高100倍以上。如果这一目标实现,那么在这一领域其他国家 与美军的差距,将难以用简单的“代差”来描述。美军通过多年的发展,已拥有全球最先进的情报侦察系统,因为对海量情报数据的分析,曾是美军情报侦察能力的 瓶颈,而大数据正好能够帮助美军突破这一瓶颈。
大数据时代,往往不要求准确知道每一个精确的细节,只需了解事物的概略全貌即可。通过相关数据信息的大量积累,而不是对某个具体数据的精确分析,大数据技 术可以为我们提炼出事物运行的规律,并判断其发展趋势。例如,2011年美军击毙本·拉登的“海神之矛”行动,就有赖上千名数据分析员长达10年数据积累 的支撑。换言之,是大数据抓住了本·拉登。
5.引领指挥决策方式变革
管理的核心是决策。大数据带来的重要变革之一,是决策的思维、模式和方法的变革。建立在小数据时代基于经验的决策,将让位于大数据时代基于全样本数据的决策。
决策是进行数据分析、行动方案设计并最终选择行动方案的过程。军事决策建立在对敌情的正确分析预测之上,其目的是通过合理分配兵力兵器,优选打击目标,设计完成任务的最佳行动方法与步骤。
以往的战争,做出作战决策时缺少足够数据支持,甚至数据本身的真实性、准确性也难以保证。目前信息化条件下的战争,各种条件都变成了数据,这就要求指挥人 员必须掌握分析海量数据的工具和能力。以往,指挥人员更多的是依靠经验进行相对概略或粗放式决策。大数据的出现必将要求指挥人员以全新的数据思维来进行指 挥决策。这种决策将有几个特点:
一是准确。只要提供的数据量足够庞大真实,通过数据挖掘模式,就可以较为准确地把握敌方指挥员的思维规律,预测对手的作战行动,掌控战场态势的发展变化等。
二是迅速。大数据相关技术所提供的高速计算能力有助于指挥员更加迅速地设计行动方案。
三是自动化。针对特定的作战对手和作战环境,大数据系统可以自动对己方成千上万、功能互补的作战单 元或平台进行模块化编组,从而实现整体作战能力的最优化;面对众多性质不同、防护力不同且威胁度各异的打击目标,大数据系统可以自动对有限数量、有限强度 和有限精度的火力进行分配,以收获最大作战效益。
在大数据时代的战争中,军事专家、技术专家的光芒会因为统计学家、数据分析家的参与而变暗,因为后者不受旧观念的影响,能够聆听数据发出的“声音”。
总之,基于数据的定量决策将和基于经验的定性决策同样重要,基于经验的决策将很大程度上让位给全样本决策,基于大数据的决策手段将从辅助决策的次要地位上升到支撑决策的重要地位。
对此,美军的认识是最到位的。美军发布的《2013-2017年国防部科学技术投资优先项目》就将“从数据到决策”项目排在了第一位,凸显了大数据对其指挥决策方式的巨大影响。
6.优化作战指挥流程
网络日益普及的情况下,信息的流通与共享已不是难题,人们开始关注对信息的认识,及将信息转化为知识的能力。
与之相适应,军事信息技术也从关注“T”(Technology)的阶段,向关注“I”(Information)的阶段转变;从建设指挥自动化系统 (C4ISR),即指挥、控制、通信、计算机、情报及监视与侦察等信息系统,整体管理“战场信息的获取、传递、处理和分发”的全信息流程;发展至重视大数 据处理应用,综合集成数据采集、处理平台和分析系统,统一优化管理“战场数据采集、传递、分析和应用”的全数据流程。即通过对海量数据进行开发处理,大幅 度提高从中提取高价值情报的能力,从而实现对战场综合态势的实时感知、同步认知,进一步压缩“包以德循环”(OODA Loop),即观察-调整-决策-行动的指挥周期,缩短“知谋定行”时间,提高快速反应能力。
随着数据挖掘技术、大规模并行算法及人工智能技术的不断完善并广泛应用在军事上,情报、决策与作战一体化将取得快速进展。在武器装备上,将特别注重各作战 平台的系统融合和无缝链接,以保证战场信息的实时快速流转,缩短从“传感器到射手”的时间差,实现“发现即摧毁”的作战目标。
比如近几年迅速发展的无人机作战平台,其本质就是一个智能系统。其可以成建制地对实时捕获的重要目标进行“发现即摧毁”式的精确打击,还能通过融合情报的 前端和后端,使数据流程与作战流程无缝链接并相互驱动,构建全方位遂行联合作战的“侦打一体”体系,从而实现了体系化的“从传感器到射手”的重大突破。
7.推动战争形态的演变
大数据可以改变未来的战争形态。美军一直追求从传感器到平台的实时打击能力,追求零伤亡。
由大数据支撑的拥有自主能力的无人作战平台,将使得这些追求成为可能。例如,目前全世界最先进的无人侦察机“全球鹰”,能连续监视运动目标,准确识别地面 的各种飞机、导弹和车辆的类型,甚至能清晰分辨出汽车轮胎的类型。现今,美空军的无人机数量已经超过了有人驾驶的飞机,或许不久的将来,美军将向以自主无 人系统为主的,对网络依赖度逐渐降低的“数据中心战”迈进。
无人机能否做到实时地对图像进行传输非常关键。
目前,美国正使用新一代极高频的通讯卫星作为大数据平台的支撑。未来,无人机甚至有可能摆脱人的控制实现完全的自主行动。美军试验型无人战斗机X-47B就是这一趋势的代表,它已经可以在完全无人干预的情况下,自动在航母上完成起降并执行作战任务。
总之,基于大数据的实时、无人化作战,将彻底改变人类几千年来以有生力量为主的战争形态。
8.引导军事组织形式变革
大数据即大融合,它有望打破军种之间的壁垒,解决军队跨军种、跨部门协作的问题,真正实现一体化作战。
就组织形态而言,扁平结构、层次简捷、高度集成、体系融合应该更符合大数据时代的要求。军事方面的相关趋势有:
(1)网状化。军队的指挥体系逐步发展为“指挥网”,原先的“树状结构”变为 “网状结构”。一个师的指挥系统一旦被打垮,师以下各级可通过“网”与上级或其他作战单元联系。这就改变了传统军事指挥体系由“树干、树枝、树叶”编成的 组织形态,避免了机械化战争时期“打断一枝、瘫痪一片”的指挥弊端,有效提高了局部战争中的指挥效能。
(2)小型化。发达国家的陆军多由军、师、团、营体制向军、旅、营制转变,使作战集团更加轻便灵活,机动性更强。 根据部队的不同功能优化组合,基本作战单位不需要加强补充就能实施多种作战,从而全面提高应对多种安全威胁,完成多样化军事任务的能力。将营作为基本战术 “模块”,将旅作为基本合成单位,以搭积木方式进行编组,战时根据需要临时编组,看迅速生成担负不同作战任务的部队。
世界各主要国家都非常重视军队组织形态变革,并致力于发展新兴军兵种,及时设计和建设新型部队。
2009年,美国国防部宣布组建网络战司令部。2013年3月,美国网络战司令部司令亚力山大宣布,美国将增加40支网络战部队。美国、俄罗斯等国都在积极筹划或正在建设能在太空进行作战的“天军”部队、“机器人”部队。
随着新兴军兵种的建立,军队的组织形态将出现新面貌,未来战争的触角不断延伸,网络、电磁频谱领域的争夺方兴未艾,太空不再是寂寞世界,天战也不再遥远。
(3)一体化。军队信息化必然要求一体化,信息化程度越高,一体化特征越明显。适应新形势下强军目标的要求,我军必须对战斗力要素进行一体化整合,推进武装力量一体化、军队编成一体化、指挥控制一体化、作战要素一体化,提高整体效益。
9.大数据将使体系作战能力大幅提升
从作战手段角度看,大数据及其支撑的新型武器装备的应用,将丰富军队的作战体系;从作战效能角度看,大数据下的作战行动循环(包以德循环)所耗时间将大为缩短,更符合“未来战争不是大吃小,而是快吃慢”的制胜规律。相关变革的结果,将是军队体系作战能力大幅提升。
10.提升军队的信息化建设水平
大数据给了各国军队(尤其是像我军这样的信息化发展水平参差不齐的军队)一个契机,可以牵引、拉动自身的信息化建设向更高层次发展,同时拉齐整体水平,因为大数据意味着“整体”。
具体来说,应以提高决策速度、反应速度和联合作战能力为目标,以数据为中心,以搜索分析处理数据为中枢架构,自上而下建设军事“数据网络”;加快组建云计 算中心,把对大数据分析处理作为军事信息化建设的重中之重,努力建构精确分析处理大数据的硬件系统、软件模型,实现大数据“从数据转化为决策”的智能化和 瞬时化。
同时,也要抓好末端的单兵及单件武器装备的数据采集、存储设备设计,从而为海量数据的挖掘和整合奠定基